# HG changeset patch # User nipkow # Date 1179556995 -7200 # Node ID 00d8bf2fce42874c62d8a0c5cdc798160fd27660 # Parent c38c9039dc138ff44d79b91de36b205fe2aac336 Had to replace "case 1/2" by "case base/step". No idea why. diff -r c38c9039dc13 -r 00d8bf2fce42 src/HOL/Library/Graphs.thy --- a/src/HOL/Library/Graphs.thy Sat May 19 07:47:51 2007 +0200 +++ b/src/HOL/Library/Graphs.thy Sat May 19 08:43:15 2007 +0200 @@ -488,9 +488,9 @@ shows "has_fpath G (p\i,j\)" using l proof (induct i rule:inc_induct) - case 1 show ?case by (auto simp:sub_path_def intro:has_fpath.intros) + case base show ?case by (auto simp:sub_path_def intro:has_fpath.intros) next - case (2 i) + case (step i) with ipath upt_rec[of i j] show ?case by (auto simp:sub_path_def has_ipath_def intro:has_fpath.intros) diff -r c38c9039dc13 -r 00d8bf2fce42 src/HOL/Library/SCT_Theorem.thy --- a/src/HOL/Library/SCT_Theorem.thy Sat May 19 07:47:51 2007 +0200 +++ b/src/HOL/Library/SCT_Theorem.thy Sat May 19 08:43:15 2007 +0200 @@ -592,17 +592,13 @@ lemma Lemma7a: -assumes "i \ j" -shows - "has_fth p i j m n = - eql (prod (p\i,j\)) m n" -using prems + "i \ j \ has_fth p i j m n = eql (prod (p\i,j\)) m n" proof (induct i arbitrary: m rule:inc_induct) - case 1 show ?case + case base show ?case unfolding has_fth_def is_fthread_def sub_path_def by (auto simp:in_grunit one_sedge_def) next - case (2 i) + case (step i) note IH = `\m. has_fth p (Suc i) j m n = eql (prod (p\Suc i,j\)) m n` @@ -630,11 +626,11 @@ dsc (prod (p\i,j\)) m n" using prems proof (induct i arbitrary: m rule:inc_induct) - case 1 show ?case + case base show ?case unfolding has_desc_fth_def is_desc_fthread_def sub_path_def by (auto simp:in_grunit one_sedge_def) next - case (2 i) + case (step i) thus ?case by (simp only:prod_unfold desc_scgcomp desc_fth_single has_dfth_unfold fth_single Lemma7a) auto @@ -1268,9 +1264,9 @@ from `i < j` `j < k` have "i < k" by auto hence "prod (?cp\i, k\) = G" proof (induct i rule:strict_inc_induct) - case 1 thus ?case by (simp add:sub_path_def) + case base thus ?case by (simp add:sub_path_def) next - case (2 i) thus ?case + case (step i) thus ?case by (simp add:sub_path_def upt_rec[of i k] idemp) qed