# HG changeset patch # User wenzelm # Date 1434823882 -7200 # Node ID 00db0d934a7dc25b7d5907bd1a5740b2d8ae30d4 # Parent 25a3c522cc8f65805a129feec90ef4b1932f9d60 tuned proofs; diff -r 25a3c522cc8f -r 00db0d934a7d src/HOL/Decision_Procs/Polynomial_List.thy --- a/src/HOL/Decision_Procs/Polynomial_List.thy Sat Jun 20 17:29:51 2015 +0200 +++ b/src/HOL/Decision_Procs/Polynomial_List.thy Sat Jun 20 20:11:22 2015 +0200 @@ -8,71 +8,72 @@ imports Complex_Main begin -text\Application of polynomial as a function.\ +text \Application of polynomial as a function.\ primrec (in semiring_0) poly :: "'a list \ 'a \ 'a" where - poly_Nil: "poly [] x = 0" -| poly_Cons: "poly (h#t) x = h + x * poly t x" + poly_Nil: "poly [] x = 0" +| poly_Cons: "poly (h # t) x = h + x * poly t x" -subsection\Arithmetic Operations on Polynomials\ +subsection \Arithmetic Operations on Polynomials\ -text\addition\ - +text \Addition\ primrec (in semiring_0) padd :: "'a list \ 'a list \ 'a list" (infixl "+++" 65) where - padd_Nil: "[] +++ l2 = l2" -| padd_Cons: "(h#t) +++ l2 = (if l2 = [] then h#t else (h + hd l2)#(t +++ tl l2))" + padd_Nil: "[] +++ l2 = l2" +| padd_Cons: "(h # t) +++ l2 = (if l2 = [] then h # t else (h + hd l2) # (t +++ tl l2))" -text\Multiplication by a constant\ +text \Multiplication by a constant\ primrec (in semiring_0) cmult :: "'a \ 'a list \ 'a list" (infixl "%*" 70) where - cmult_Nil: "c %* [] = []" + cmult_Nil: "c %* [] = []" | cmult_Cons: "c %* (h#t) = (c * h)#(c %* t)" -text\Multiplication by a polynomial\ +text \Multiplication by a polynomial\ primrec (in semiring_0) pmult :: "'a list \ 'a list \ 'a list" (infixl "***" 70) where - pmult_Nil: "[] *** l2 = []" -| pmult_Cons: "(h#t) *** l2 = (if t = [] then h %* l2 - else (h %* l2) +++ ((0) # (t *** l2)))" + pmult_Nil: "[] *** l2 = []" +| pmult_Cons: "(h # t) *** l2 = (if t = [] then h %* l2 else (h %* l2) +++ (0 # (t *** l2)))" -text\Repeated multiplication by a polynomial\ -primrec (in semiring_0) mulexp :: "nat \ 'a list \ 'a list \ 'a list" where - mulexp_zero: "mulexp 0 p q = q" -| mulexp_Suc: "mulexp (Suc n) p q = p *** mulexp n p q" +text \Repeated multiplication by a polynomial\ +primrec (in semiring_0) mulexp :: "nat \ 'a list \ 'a list \ 'a list" +where + mulexp_zero: "mulexp 0 p q = q" +| mulexp_Suc: "mulexp (Suc n) p q = p *** mulexp n p q" -text\Exponential\ -primrec (in semiring_1) pexp :: "'a list \ nat \ 'a list" (infixl "%^" 80) where - pexp_0: "p %^ 0 = [1]" +text \Exponential\ +primrec (in semiring_1) pexp :: "'a list \ nat \ 'a list" (infixl "%^" 80) +where + pexp_0: "p %^ 0 = [1]" | pexp_Suc: "p %^ (Suc n) = p *** (p %^ n)" -text\Quotient related value of dividing a polynomial by x + a\ -(* Useful for divisor properties in inductive proofs *) +text \Quotient related value of dividing a polynomial by x + a. + Useful for divisor properties in inductive proofs.\ primrec (in field) "pquot" :: "'a list \ 'a \ 'a list" where - pquot_Nil: "pquot [] a= []" -| pquot_Cons: "pquot (h#t) a = - (if t = [] then [h] else (inverse(a) * (h - hd( pquot t a)))#(pquot t a))" + pquot_Nil: "pquot [] a = []" +| pquot_Cons: "pquot (h # t) a = + (if t = [] then [h] else (inverse a * (h - hd( pquot t a))) # pquot t a)" -text\normalization of polynomials (remove extra 0 coeff)\ -primrec (in semiring_0) pnormalize :: "'a list \ 'a list" where - pnormalize_Nil: "pnormalize [] = []" -| pnormalize_Cons: "pnormalize (h#p) = +text \Normalization of polynomials (remove extra 0 coeff).\ +primrec (in semiring_0) pnormalize :: "'a list \ 'a list" +where + pnormalize_Nil: "pnormalize [] = []" +| pnormalize_Cons: "pnormalize (h # p) = (if pnormalize p = [] then (if h = 0 then [] else [h]) else h # pnormalize p)" -definition (in semiring_0) "pnormal p = ((pnormalize p = p) \ p \ [])" -definition (in semiring_0) "nonconstant p = (pnormal p \ (\x. p \ [x]))" -text\Other definitions\ +definition (in semiring_0) "pnormal p \ pnormalize p = p \ p \ []" +definition (in semiring_0) "nonconstant p \ pnormal p \ (\x. p \ [x])" + +text \Other definitions.\ definition (in ring_1) poly_minus :: "'a list \ 'a list" ("-- _" [80] 80) where "-- p = (- 1) %* p" definition (in semiring_0) divides :: "'a list \ 'a list \ bool" (infixl "divides" 70) - where "p1 divides p2 = (\q. poly p2 = poly(p1 *** q))" + where "p1 divides p2 \ (\q. poly p2 = poly(p1 *** q))" -lemma (in semiring_0) dividesI: - "poly p2 = poly (p1 *** q) \ p1 divides p2" +lemma (in semiring_0) dividesI: "poly p2 = poly (p1 *** q) \ p1 divides p2" by (auto simp add: divides_def) lemma (in semiring_0) dividesE: @@ -80,15 +81,15 @@ obtains q where "poly p2 = poly (p1 *** q)" using assms by (auto simp add: divides_def) - --\order of a polynomial\ -definition (in ring_1) order :: "'a \ 'a list \ nat" where - "order a p = (SOME n. ([-a, 1] %^ n) divides p \ ~ (([-a, 1] %^ (Suc n)) divides p))" +-- \order of a polynomial\ +definition (in ring_1) order :: "'a \ 'a list \ nat" + where "order a p = (SOME n. ([-a, 1] %^ n) divides p \ \ (([-a, 1] %^ (Suc n)) divides p))" - --\degree of a polynomial\ +-- \degree of a polynomial\ definition (in semiring_0) degree :: "'a list \ nat" where "degree p = length (pnormalize p) - 1" - --\squarefree polynomials --- NB with respect to real roots only.\ +-- \squarefree polynomials --- NB with respect to real roots only\ definition (in ring_1) rsquarefree :: "'a list \ bool" where "rsquarefree p \ poly p \ poly [] \ (\a. order a p = 0 \ order a p = 1)" @@ -108,51 +109,61 @@ end -lemma (in semiring_1) poly_ident_mult[simp]: "1 %* t = t" by (induct t) auto +lemma (in semiring_1) poly_ident_mult[simp]: "1 %* t = t" + by (induct t) auto -lemma (in semiring_0) poly_simple_add_Cons[simp]: "[a] +++ ((0)#t) = (a#t)" +lemma (in semiring_0) poly_simple_add_Cons[simp]: "[a] +++ (0 # t) = a # t" by simp -text\Handy general properties\ + +text \Handy general properties.\ lemma (in comm_semiring_0) padd_commut: "b +++ a = a +++ b" proof (induct b arbitrary: a) case Nil - thus ?case by auto + then show ?case + by auto next case (Cons b bs a) - thus ?case by (cases a) (simp_all add: add.commute) + then show ?case + by (cases a) (simp_all add: add.commute) qed lemma (in comm_semiring_0) padd_assoc: "\b c. (a +++ b) +++ c = a +++ (b +++ c)" apply (induct a) - apply (simp, clarify) - apply (case_tac b, simp_all add: ac_simps) + apply simp + apply clarify + apply (case_tac b) + apply (simp_all add: ac_simps) done -lemma (in semiring_0) poly_cmult_distr: "a %* ( p +++ q) = (a %* p +++ a %* q)" +lemma (in semiring_0) poly_cmult_distr: "a %* (p +++ q) = a %* p +++ a %* q" apply (induct p arbitrary: q) apply simp - apply (case_tac q, simp_all add: distrib_left) + apply (case_tac q) + apply (simp_all add: distrib_left) done -lemma (in ring_1) pmult_by_x[simp]: "[0, 1] *** t = ((0)#t)" +lemma (in ring_1) pmult_by_x[simp]: "[0, 1] *** t = 0 # t" apply (induct t) apply simp apply (auto simp add: padd_commut) - apply (case_tac t, auto) + apply (case_tac t) + apply auto done -text\properties of evaluation of polynomials.\ + +text \Properties of evaluation of polynomials.\ lemma (in semiring_0) poly_add: "poly (p1 +++ p2) x = poly p1 x + poly p2 x" -proof(induct p1 arbitrary: p2) +proof (induct p1 arbitrary: p2) case Nil - thus ?case by simp + then show ?case + by simp next case (Cons a as p2) - thus ?case - by (cases p2) (simp_all add: ac_simps distrib_left) + then show ?case + by (cases p2) (simp_all add: ac_simps distrib_left) qed lemma (in comm_semiring_0) poly_cmult: "poly (c %* p) x = c * poly p x" @@ -161,7 +172,7 @@ apply (auto simp add: distrib_left ac_simps) done -lemma (in comm_semiring_0) poly_cmult_map: "poly (map (op * c) p) x = c*poly p x" +lemma (in comm_semiring_0) poly_cmult_map: "poly (map (op * c) p) x = c * poly p x" by (induct p) (auto simp add: distrib_left ac_simps) lemma (in comm_ring_1) poly_minus: "poly (-- p) x = - (poly p x)" @@ -172,11 +183,12 @@ lemma (in comm_semiring_0) poly_mult: "poly (p1 *** p2) x = poly p1 x * poly p2 x" proof (induct p1 arbitrary: p2) case Nil - thus ?case by simp + then show ?case + by simp next case (Cons a as p2) - thus ?case by (cases as) - (simp_all add: poly_cmult poly_add distrib_right distrib_left ac_simps) + then show ?case + by (cases as) (simp_all add: poly_cmult poly_add distrib_right distrib_left ac_simps) qed class idom_char_0 = idom + ring_char_0 @@ -186,7 +198,8 @@ lemma (in comm_ring_1) poly_exp: "poly (p %^ n) x = (poly p x) ^ n" by (induct n) (auto simp add: poly_cmult poly_mult) -text\More Polynomial Evaluation Lemmas\ + +text \More Polynomial Evaluation lemmas.\ lemma (in semiring_0) poly_add_rzero[simp]: "poly (a +++ []) x = poly a x" by simp @@ -197,71 +210,72 @@ lemma (in semiring_0) poly_mult_Nil2[simp]: "poly (p *** []) x = 0" by (induct p) auto -lemma (in comm_semiring_1) poly_exp_add: "poly (p %^ (n + d)) x = poly( p %^ n *** p %^ d) x" +lemma (in comm_semiring_1) poly_exp_add: "poly (p %^ (n + d)) x = poly (p %^ n *** p %^ d) x" by (induct n) (auto simp add: poly_mult mult.assoc) -subsection\Key Property: if @{term "f(a) = 0"} then @{term "(x - a)"} divides - @{term "p(x)"}\ + +subsection \Key Property: if @{term "f a = 0"} then @{term "(x - a)"} divides @{term "p(x)"}.\ lemma (in comm_ring_1) lemma_poly_linear_rem: "\h. \q r. h#t = [r] +++ [-a, 1] *** q" -proof(induct t) +proof (induct t) case Nil - { fix h have "[h] = [h] +++ [- a, 1] *** []" by simp } - thus ?case by blast + have "[h] = [h] +++ [- a, 1] *** []" for h by simp + then show ?case by blast next case (Cons x xs) - { fix h - from Cons.hyps[rule_format, of x] - obtain q r where qr: "x#xs = [r] +++ [- a, 1] *** q" by blast - have "h#x#xs = [a*r + h] +++ [-a, 1] *** (r#q)" + have "\q r. h # x # xs = [r] +++ [-a, 1] *** q" for h + proof - + from Cons.hyps obtain q r where qr: "x # xs = [r] +++ [- a, 1] *** q" + by blast + have "h # x # xs = [a * r + h] +++ [-a, 1] *** (r # q)" using qr by (cases q) (simp_all add: algebra_simps) - hence "\q r. h#x#xs = [r] +++ [-a, 1] *** q" by blast} - thus ?case by blast + then show ?thesis by blast + qed + then show ?case by blast qed lemma (in comm_ring_1) poly_linear_rem: "\q r. h#t = [r] +++ [-a, 1] *** q" using lemma_poly_linear_rem [where t = t and a = a] by auto - -lemma (in comm_ring_1) poly_linear_divides: "(poly p a = 0) = ((p = []) | (\q. p = [-a, 1] *** q))" -proof - - { assume p: "p = []" hence ?thesis by simp } +lemma (in comm_ring_1) poly_linear_divides: "(poly p a = 0) \ p = [] \ (\q. p = [-a, 1] *** q)" +proof (cases p) + case Nil + then show ?thesis by simp +next + case (Cons x xs) + have "poly p a = 0" if "p = [-a, 1] *** q" for q + using that by (simp add: poly_add poly_cmult) moreover - { - fix x xs assume p: "p = x#xs" - { - fix q assume "p = [-a, 1] *** q" - hence "poly p a = 0" by (simp add: poly_add poly_cmult) - } - moreover - { assume p0: "poly p a = 0" - from poly_linear_rem[of x xs a] obtain q r - where qr: "x#xs = [r] +++ [- a, 1] *** q" by blast - have "r = 0" using p0 by (simp only: p qr poly_mult poly_add) simp - hence "\q. p = [- a, 1] *** q" - using p qr - apply - - apply (rule exI[where x=q]) - apply auto - apply (cases q) - apply auto - done - } - ultimately have ?thesis using p by blast - } - ultimately show ?thesis by (cases p) auto + have "\q. p = [- a, 1] *** q" if p0: "poly p a = 0" + proof - + from poly_linear_rem[of x xs a] obtain q r where qr: "x#xs = [r] +++ [- a, 1] *** q" + by blast + have "r = 0" + using p0 by (simp only: Cons qr poly_mult poly_add) simp + with Cons qr show ?thesis + apply - + apply (rule exI[where x = q]) + apply auto + apply (cases q) + apply auto + done + qed + ultimately show ?thesis using Cons by blast qed -lemma (in semiring_0) lemma_poly_length_mult[simp]: "\h k a. length (k %* p +++ (h # (a %* p))) = Suc (length p)" +lemma (in semiring_0) lemma_poly_length_mult[simp]: + "\h k a. length (k %* p +++ (h # (a %* p))) = Suc (length p)" by (induct p) auto -lemma (in semiring_0) lemma_poly_length_mult2[simp]: "\h k. length (k %* p +++ (h # p)) = Suc (length p)" +lemma (in semiring_0) lemma_poly_length_mult2[simp]: + "\h k. length (k %* p +++ (h # p)) = Suc (length p)" by (induct p) auto lemma (in ring_1) poly_length_mult[simp]: "length([-a,1] *** q) = Suc (length q)" by auto -subsection\Polynomial length\ + +subsection \Polynomial length\ lemma (in semiring_0) poly_cmult_length[simp]: "length (a %* p) = length p" by (induct p) auto @@ -279,46 +293,52 @@ lemma (in idom) poly_mult_eq_zero_disj: "poly (p *** q) x = 0 \ poly p x = 0 \ poly q x = 0" by (auto simp add: poly_mult) -text\Normalisation Properties\ -lemma (in semiring_0) poly_normalized_nil: "(pnormalize p = []) --> (poly p x = 0)" +text \Normalisation Properties.\ + +lemma (in semiring_0) poly_normalized_nil: "pnormalize p = [] \ poly p x = 0" by (induct p) auto -text\A nontrivial polynomial of degree n has no more than n roots\ +text \A nontrivial polynomial of degree n has no more than n roots.\ lemma (in idom) poly_roots_index_lemma: - assumes p: "poly p x \ poly [] x" and n: "length p = n" + assumes p: "poly p x \ poly [] x" + and n: "length p = n" shows "\i. \x. poly p x = 0 \ (\m\n. x = i m)" using p n proof (induct n arbitrary: p x) case 0 - thus ?case by simp + then show ?case by simp next case (Suc n p x) - { - assume C: "\i. \x. poly p x = 0 \ (\m\Suc n. x \ i m)" - from Suc.prems have p0: "poly p x \ 0" "p\ []" by auto + have False if C: "\i. \x. poly p x = 0 \ (\m\Suc n. x \ i m)" + proof - + from Suc.prems have p0: "poly p x \ 0" "p \ []" + by auto from p0(1)[unfolded poly_linear_divides[of p x]] - have "\q. p \ [- x, 1] *** q" by blast - from C obtain a where a: "poly p a = 0" by blast - from a[unfolded poly_linear_divides[of p a]] p0(2) - obtain q where q: "p = [-a, 1] *** q" by blast - have lg: "length q = n" using q Suc.prems(2) by simp + have "\q. p \ [- x, 1] *** q" + by blast + from C obtain a where a: "poly p a = 0" + by blast + from a[unfolded poly_linear_divides[of p a]] p0(2) obtain q where q: "p = [-a, 1] *** q" + by blast + have lg: "length q = n" + using q Suc.prems(2) by simp from q p0 have qx: "poly q x \ poly [] x" by (auto simp add: poly_mult poly_add poly_cmult) - from Suc.hyps[OF qx lg] obtain i where - i: "\x. poly q x = 0 \ (\m\n. x = i m)" by blast + from Suc.hyps[OF qx lg] obtain i where i: "\x. poly q x = 0 \ (\m\n. x = i m)" + by blast let ?i = "\m. if m = Suc n then a else i m" from C[of ?i] obtain y where y: "poly p y = 0" "\m\ Suc n. y \ ?i m" by blast from y have "y = a \ poly q y = 0" by (simp only: q poly_mult_eq_zero_disj poly_add) (simp add: algebra_simps) - with i[rule_format, of y] y(1) y(2) have False + with i[rule_format, of y] y(1) y(2) show ?thesis apply auto apply (erule_tac x = "m" in allE) apply auto done - } - thus ?case by blast + qed + then show ?case by blast qed @@ -327,7 +347,7 @@ by (blast intro: poly_roots_index_lemma) lemma (in idom) poly_roots_finite_lemma1: - "poly p x \ poly [] x \ \N i. \x. (poly p x = 0) \ (\n. (n::nat) < N \ x = i n)" + "poly p x \ poly [] x \ \N i. \x. (poly p x = 0) \ (\n::nat. n < N \ x = i n)" apply (drule poly_roots_index_length, safe) apply (rule_tac x = "Suc (length p)" in exI) apply (rule_tac x = i in exI) @@ -335,61 +355,65 @@ done lemma (in idom) idom_finite_lemma: - assumes P: "\x. P x --> (\n. n < length j \ x = j!n)" + assumes "\x. P x \ (\n. n < length j \ x = j!n)" shows "finite {x. P x}" proof - - let ?M = "{x. P x}" - let ?N = "set j" - have "?M \ ?N" using P by auto - thus ?thesis using finite_subset by auto + from assms have "{x. P x} \ set j" by auto + then show ?thesis using finite_subset by auto qed lemma (in idom) poly_roots_finite_lemma2: "poly p x \ poly [] x \ \i. \x. poly p x = 0 \ x \ set i" - apply (drule poly_roots_index_length, safe) - apply (rule_tac x="map (\n. i n) [0 ..< Suc (length p)]" in exI) + apply (drule poly_roots_index_length) + apply safe + apply (rule_tac x = "map (\n. i n) [0 ..< Suc (length p)]" in exI) apply (auto simp add: image_iff) - apply (erule_tac x="x" in allE, clarsimp) + apply (erule_tac x="x" in allE) + apply clarsimp apply (case_tac "n = length p") apply (auto simp add: order_le_less) done -lemma (in ring_char_0) UNIV_ring_char_0_infinte: "\ (finite (UNIV:: 'a set))" +lemma (in ring_char_0) UNIV_ring_char_0_infinte: "\ finite (UNIV :: 'a set)" proof assume F: "finite (UNIV :: 'a set)" have "finite (UNIV :: nat set)" proof (rule finite_imageD) have "of_nat ` UNIV \ UNIV" by simp - then show "finite (of_nat ` UNIV :: 'a set)" using F by (rule finite_subset) - show "inj (of_nat :: nat \ 'a)" by (simp add: inj_on_def) + then show "finite (of_nat ` UNIV :: 'a set)" + using F by (rule finite_subset) + show "inj (of_nat :: nat \ 'a)" + by (simp add: inj_on_def) qed with infinite_UNIV_nat show False .. qed lemma (in idom_char_0) poly_roots_finite: "poly p \ poly [] \ finite {x. poly p x = 0}" + (is "?lhs \ ?rhs") proof - assume H: "poly p \ poly []" - show "finite {x. poly p x = (0::'a)}" - using H + show ?rhs if ?lhs + using that apply - - apply (erule contrapos_np, rule ext) + apply (erule contrapos_np) + apply (rule ext) apply (rule ccontr) apply (clarify dest!: poly_roots_finite_lemma2) using finite_subset proof - fix x i - assume F: "\ finite {x. poly p x = (0\'a)}" - and P: "\x. poly p x = (0\'a) \ x \ set i" - let ?M= "{x. poly p x = (0\'a)}" - from P have "?M \ set i" by auto - with finite_subset F show False by auto + assume F: "\ finite {x. poly p x = 0}" + and P: "\x. poly p x = 0 \ x \ set i" + from P have "{x. poly p x = 0} \ set i" + by auto + with finite_subset F show False + by auto qed -next - assume F: "finite {x. poly p x = (0\'a)}" - show "poly p \ poly []" using F UNIV_ring_char_0_infinte by auto + show ?lhs if ?rhs + using UNIV_ring_char_0_infinte that by auto qed -text\Entirety and Cancellation for polynomials\ + +text \Entirety and Cancellation for polynomials\ lemma (in idom_char_0) poly_entire_lemma2: assumes p0: "poly p \ poly []" @@ -397,8 +421,10 @@ shows "poly (p***q) \ poly []" proof - let ?S = "\p. {x. poly p x = 0}" - have "?S (p *** q) = ?S p \ ?S q" by (auto simp add: poly_mult) - with p0 q0 show ?thesis unfolding poly_roots_finite by auto + have "?S (p *** q) = ?S p \ ?S q" + by (auto simp add: poly_mult) + with p0 q0 show ?thesis + unfolding poly_roots_finite by auto qed lemma (in idom_char_0) poly_entire: @@ -410,16 +436,13 @@ "poly (p *** q) \ poly [] \ poly p \ poly [] \ poly q \ poly []" by (simp add: poly_entire) -lemma fun_eq: "f = g \ (\x. f x = g x)" - by auto - lemma (in comm_ring_1) poly_add_minus_zero_iff: "poly (p +++ -- q) = poly [] \ poly p = poly q" - by (auto simp add: algebra_simps poly_add poly_minus_def fun_eq poly_cmult) + by (auto simp add: algebra_simps poly_add poly_minus_def fun_eq_iff poly_cmult) lemma (in comm_ring_1) poly_add_minus_mult_eq: "poly (p *** q +++ --(p *** r)) = poly (p *** (q +++ -- r))" - by (auto simp add: poly_add poly_minus_def fun_eq poly_mult poly_cmult algebra_simps) + by (auto simp add: poly_add poly_minus_def fun_eq_iff poly_mult poly_cmult algebra_simps) subclass (in idom_char_0) comm_ring_1 .. @@ -433,17 +456,16 @@ finally show ?thesis . qed -lemma (in idom) poly_exp_eq_zero[simp]: - "poly (p %^ n) = poly [] \ poly p = poly [] \ n \ 0" - apply (simp only: fun_eq add: HOL.all_simps [symmetric]) +lemma (in idom) poly_exp_eq_zero[simp]: "poly (p %^ n) = poly [] \ poly p = poly [] \ n \ 0" + apply (simp only: fun_eq_iff add: HOL.all_simps [symmetric]) apply (rule arg_cong [where f = All]) apply (rule ext) apply (induct n) apply (auto simp add: poly_exp poly_mult) done -lemma (in comm_ring_1) poly_prime_eq_zero[simp]: "poly [a,1] \ poly []" - apply (simp add: fun_eq) +lemma (in comm_ring_1) poly_prime_eq_zero[simp]: "poly [a, 1] \ poly []" + apply (simp add: fun_eq_iff) apply (rule_tac x = "minus one a" in exI) apply (simp add: add.commute [of a]) done @@ -451,54 +473,60 @@ lemma (in idom) poly_exp_prime_eq_zero: "poly ([a, 1] %^ n) \ poly []" by auto -text\A more constructive notion of polynomials being trivial\ + +text \A more constructive notion of polynomials being trivial.\ lemma (in idom_char_0) poly_zero_lemma': "poly (h # t) = poly [] \ h = 0 \ poly t = poly []" - apply (simp add: fun_eq) + apply (simp add: fun_eq_iff) apply (case_tac "h = zero") - apply (drule_tac [2] x = zero in spec, auto) - apply (cases "poly t = poly []", simp) + apply (drule_tac [2] x = zero in spec) + apply auto + apply (cases "poly t = poly []") + apply simp proof - fix x - assume H: "\x. x = (0\'a) \ poly t x = (0\'a)" - and pnz: "poly t \ poly []" + assume H: "\x. x = 0 \ poly t x = 0" + assume pnz: "poly t \ poly []" let ?S = "{x. poly t x = 0}" - from H have "\x. x \0 \ poly t x = 0" by blast - hence th: "?S \ UNIV - {0}" by auto - from poly_roots_finite pnz have th': "finite ?S" by blast - from finite_subset[OF th th'] UNIV_ring_char_0_infinte show "poly t x = (0\'a)" + from H have "\x. x \ 0 \ poly t x = 0" + by blast + then have th: "?S \ UNIV - {0}" + by auto + from poly_roots_finite pnz have th': "finite ?S" + by blast + from finite_subset[OF th th'] UNIV_ring_char_0_infinte show "poly t x = 0" by simp qed -lemma (in idom_char_0) poly_zero: "(poly p = poly []) = list_all (%c. c = 0) p" +lemma (in idom_char_0) poly_zero: "poly p = poly [] \ list_all (\c. c = 0) p" apply (induct p) apply simp apply (rule iffI) - apply (drule poly_zero_lemma', auto) + apply (drule poly_zero_lemma') + apply auto done lemma (in idom_char_0) poly_0: "list_all (\c. c = 0) p \ poly p x = 0" unfolding poly_zero[symmetric] by simp - -text\Basics of divisibility.\ +text \Basics of divisibility.\ -lemma (in idom) poly_primes: - "[a, 1] divides (p *** q) \ [a, 1] divides p \ [a, 1] divides q" - apply (auto simp add: divides_def fun_eq poly_mult poly_add poly_cmult distrib_right [symmetric]) +lemma (in idom) poly_primes: "[a, 1] divides (p *** q) \ [a, 1] divides p \ [a, 1] divides q" + apply (auto simp add: divides_def fun_eq_iff poly_mult poly_add poly_cmult distrib_right [symmetric]) apply (drule_tac x = "uminus a" in spec) apply (simp add: poly_linear_divides poly_add poly_cmult distrib_right [symmetric]) apply (cases "p = []") apply (rule exI[where x="[]"]) apply simp apply (cases "q = []") - apply (erule allE[where x="[]"], simp) + apply (erule allE[where x="[]"]) + apply simp apply clarsimp - apply (cases "\q\'a list. p = a %* q +++ ((0\'a) # q)") + apply (cases "\q. p = a %* q +++ (0 # q)") apply (clarsimp simp add: poly_add poly_cmult) - apply (rule_tac x="qa" in exI) + apply (rule_tac x = qa in exI) apply (simp add: distrib_right [symmetric]) apply clarsimp @@ -511,13 +539,14 @@ lemma (in comm_semiring_1) poly_divides_refl[simp]: "p divides p" apply (simp add: divides_def) apply (rule_tac x = "[one]" in exI) - apply (auto simp add: poly_mult fun_eq) + apply (auto simp add: poly_mult fun_eq_iff) done lemma (in comm_semiring_1) poly_divides_trans: "p divides q \ q divides r \ p divides r" - apply (simp add: divides_def, safe) + apply (simp add: divides_def) + apply safe apply (rule_tac x = "pmult qa qaa" in exI) - apply (auto simp add: poly_mult fun_eq mult.assoc) + apply (auto simp add: poly_mult fun_eq_iff mult.assoc) done lemma (in comm_semiring_1) poly_divides_exp: "m \ n \ (p %^ m) divides (p %^ n)" @@ -526,46 +555,43 @@ apply (rule_tac [2] poly_divides_trans) apply (auto simp add: divides_def) apply (rule_tac x = p in exI) - apply (auto simp add: poly_mult fun_eq ac_simps) + apply (auto simp add: poly_mult fun_eq_iff ac_simps) done -lemma (in comm_semiring_1) poly_exp_divides: - "(p %^ n) divides q \ m \ n \ (p %^ m) divides q" +lemma (in comm_semiring_1) poly_exp_divides: "(p %^ n) divides q \ m \ n \ (p %^ m) divides q" by (blast intro: poly_divides_exp poly_divides_trans) -lemma (in comm_semiring_0) poly_divides_add: - "p divides q \ p divides r \ p divides (q +++ r)" - apply (simp add: divides_def, auto) +lemma (in comm_semiring_0) poly_divides_add: "p divides q \ p divides r \ p divides (q +++ r)" + apply (auto simp add: divides_def) apply (rule_tac x = "padd qa qaa" in exI) - apply (auto simp add: poly_add fun_eq poly_mult distrib_left) + apply (auto simp add: poly_add fun_eq_iff poly_mult distrib_left) done -lemma (in comm_ring_1) poly_divides_diff: - "p divides q \ p divides (q +++ r) \ p divides r" - apply (simp add: divides_def, auto) +lemma (in comm_ring_1) poly_divides_diff: "p divides q \ p divides (q +++ r) \ p divides r" + apply (auto simp add: divides_def) apply (rule_tac x = "padd qaa (poly_minus qa)" in exI) - apply (auto simp add: poly_add fun_eq poly_mult poly_minus algebra_simps) + apply (auto simp add: poly_add fun_eq_iff poly_mult poly_minus algebra_simps) done -lemma (in comm_ring_1) poly_divides_diff2: - "p divides r \ p divides (q +++ r) \ p divides q" +lemma (in comm_ring_1) poly_divides_diff2: "p divides r \ p divides (q +++ r) \ p divides q" apply (erule poly_divides_diff) - apply (auto simp add: poly_add fun_eq poly_mult divides_def ac_simps) + apply (auto simp add: poly_add fun_eq_iff poly_mult divides_def ac_simps) done lemma (in semiring_0) poly_divides_zero: "poly p = poly [] \ q divides p" apply (simp add: divides_def) - apply (rule exI[where x="[]"]) - apply (auto simp add: fun_eq poly_mult) + apply (rule exI[where x = "[]"]) + apply (auto simp add: fun_eq_iff poly_mult) done lemma (in semiring_0) poly_divides_zero2 [simp]: "q divides []" apply (simp add: divides_def) apply (rule_tac x = "[]" in exI) - apply (auto simp add: fun_eq) + apply (auto simp add: fun_eq_iff) done -text\At last, we can consider the order of a root.\ + +text \At last, we can consider the order of a root.\ lemma (in idom_char_0) poly_order_exists_lemma: assumes lp: "length p = d" @@ -574,22 +600,24 @@ using lp p proof (induct d arbitrary: p) case 0 - thus ?case by simp + then show ?case by simp next case (Suc n p) show ?case proof (cases "poly p a = 0") case True - from Suc.prems have h: "length p = Suc n" "poly p \ poly []" by auto - hence pN: "p \ []" by auto + from Suc.prems have h: "length p = Suc n" "poly p \ poly []" + by auto + then have pN: "p \ []" + by auto from True[unfolded poly_linear_divides] pN obtain q where q: "p = [-a, 1] *** q" by blast from q h True have qh: "length q = n" "poly q \ poly []" apply - apply simp - apply (simp only: fun_eq) + apply (simp only: fun_eq_iff) apply (rule ccontr) - apply (simp add: fun_eq poly_add poly_cmult) + apply (simp add: fun_eq_iff poly_add poly_cmult) done from Suc.hyps[OF qh] obtain m r where mr: "q = mulexp m [-a,1] r" "poly r a \ 0" by blast @@ -611,13 +639,15 @@ by (induct n) (auto simp add: poly_mult ac_simps) lemma (in comm_semiring_1) divides_left_mult: - assumes d:"(p***q) divides r" shows "p divides r \ q divides r" + assumes "(p *** q) divides r" + shows "p divides r \ q divides r" proof- - from d obtain t where r:"poly r = poly (p***q *** t)" + from assms obtain t where "poly r = poly (p *** q *** t)" unfolding divides_def by blast - hence "poly r = poly (p *** (q *** t))" - "poly r = poly (q *** (p***t))" by(auto simp add: fun_eq poly_mult ac_simps) - thus ?thesis unfolding divides_def by blast + then have "poly r = poly (p *** (q *** t))" and "poly r = poly (q *** (p *** t))" + by (auto simp add: fun_eq_iff poly_mult ac_simps) + then show ?thesis + unfolding divides_def by blast qed @@ -627,12 +657,14 @@ by (induct n) simp_all lemma (in idom_char_0) poly_order_exists: - assumes "length p = d" and "poly p \ poly []" + assumes "length p = d" + and "poly p \ poly []" shows "\n. [- a, 1] %^ n divides p \ \ [- a, 1] %^ Suc n divides p" proof - from assms have "\n q. p = mulexp n [- a, 1] q \ poly q a \ 0" by (rule poly_order_exists_lemma) - then obtain n q where p: "p = mulexp n [- a, 1] q" and "poly q a \ 0" by blast + then obtain n q where p: "p = mulexp n [- a, 1] q" and "poly q a \ 0" + by blast have "[- a, 1] %^ n divides mulexp n [- a, 1] q" proof (rule dividesI) show "poly (mulexp n [- a, 1] q) = poly ([- a, 1] %^ n *** q)" @@ -645,21 +677,25 @@ by (rule dividesE) moreover have "poly (mulexp n [- a, 1] q) \ poly ([- a, 1] %^ Suc n *** m)" proof (induct n) - case 0 show ?case + case 0 + show ?case proof (rule ccontr) assume "\ poly (mulexp 0 [- a, 1] q) \ poly ([- a, 1] %^ Suc 0 *** m)" then have "poly q a = 0" by (simp add: poly_add poly_cmult) - with \poly q a \ 0\ show False by simp + with \poly q a \ 0\ show False + by simp qed next - case (Suc n) show ?case + case (Suc n) + show ?case by (rule pexp_Suc [THEN ssubst], rule ccontr) (simp add: poly_mult_left_cancel poly_mult_assoc Suc del: pmult_Cons pexp_Suc) qed ultimately show False by simp qed - ultimately show ?thesis by (auto simp add: p) + ultimately show ?thesis + by (auto simp add: p) qed lemma (in semiring_1) poly_one_divides[simp]: "[1] divides p" @@ -671,19 +707,19 @@ apply (cut_tac x = y and y = n in less_linear) apply (drule_tac m = n in poly_exp_divides) apply (auto dest: Suc_le_eq [THEN iffD2, THEN [2] poly_exp_divides] - simp del: pmult_Cons pexp_Suc) + simp del: pmult_Cons pexp_Suc) done -text\Order\ + +text \Order\ lemma some1_equalityD: "n = (SOME n. P n) \ \!n. P n \ P n" by (blast intro: someI2) lemma (in idom_char_0) order: - "(([-a, 1] %^ n) divides p \ - ~(([-a, 1] %^ (Suc n)) divides p)) = - ((n = order a p) \ ~(poly p = poly []))" - apply (unfold order_def) + "([-a, 1] %^ n) divides p \ \ (([-a, 1] %^ Suc n) divides p) \ + n = order a p \ poly p \ poly []" + unfolding order_def apply (rule iffI) apply (blast dest: poly_divides_zero intro!: some1_equality [symmetric] poly_order) apply (blast intro!: poly_order [THEN [2] some1_equalityD]) @@ -691,82 +727,88 @@ lemma (in idom_char_0) order2: "poly p \ poly [] \ - ([-a, 1] %^ (order a p)) divides p \ \ (([-a, 1] %^ (Suc (order a p))) divides p)" + ([-a, 1] %^ (order a p)) divides p \ \ ([-a, 1] %^ Suc (order a p)) divides p" by (simp add: order del: pexp_Suc) lemma (in idom_char_0) order_unique: - "poly p \ poly [] \ ([-a, 1] %^ n) divides p \ ~(([-a, 1] %^ (Suc n)) divides p) \ + "poly p \ poly [] \ ([-a, 1] %^ n) divides p \ \ ([-a, 1] %^ (Suc n)) divides p \ n = order a p" using order [of a n p] by auto lemma (in idom_char_0) order_unique_lemma: - "poly p \ poly [] \ ([-a, 1] %^ n) divides p \ ~(([-a, 1] %^ (Suc n)) divides p) \ + "poly p \ poly [] \ ([-a, 1] %^ n) divides p \ \ ([-a, 1] %^ (Suc n)) divides p \ n = order a p" by (blast intro: order_unique) lemma (in ring_1) order_poly: "poly p = poly q \ order a p = order a q" - by (auto simp add: fun_eq divides_def poly_mult order_def) + by (auto simp add: fun_eq_iff divides_def poly_mult order_def) lemma (in semiring_1) pexp_one[simp]: "p %^ (Suc 0) = p" - by (induct "p") auto + by (induct p) auto lemma (in comm_ring_1) lemma_order_root: - "0 < n \ [- a, 1] %^ n divides p \ ~ [- a, 1] %^ (Suc n) divides p \ poly p a = 0" + "0 < n \ [- a, 1] %^ n divides p \ \ [- a, 1] %^ (Suc n) divides p \ poly p a = 0" by (induct n arbitrary: a p) (auto simp add: divides_def poly_mult simp del: pmult_Cons) -lemma (in idom_char_0) order_root: - "poly p a = 0 \ poly p = poly [] \ order a p \ 0" +lemma (in idom_char_0) order_root: "poly p a = 0 \ poly p = poly [] \ order a p \ 0" apply (cases "poly p = poly []") apply auto - apply (simp add: poly_linear_divides del: pmult_Cons, safe) + apply (simp add: poly_linear_divides del: pmult_Cons) + apply safe apply (drule_tac [!] a = a in order2) apply (rule ccontr) - apply (simp add: divides_def poly_mult fun_eq del: pmult_Cons, blast) - using neq0_conv - apply (blast intro: lemma_order_root) + apply (simp add: divides_def poly_mult fun_eq_iff del: pmult_Cons) + apply blast + using neq0_conv apply (blast intro: lemma_order_root) done lemma (in idom_char_0) order_divides: "([-a, 1] %^ n) divides p \ poly p = poly [] \ n \ order a p" apply (cases "poly p = poly []") apply auto - apply (simp add: divides_def fun_eq poly_mult) + apply (simp add: divides_def fun_eq_iff poly_mult) apply (rule_tac x = "[]" in exI) apply (auto dest!: order2 [where a=a] intro: poly_exp_divides simp del: pexp_Suc) done lemma (in idom_char_0) order_decomp: - "poly p \ poly [] \ \q. poly p = poly (([-a, 1] %^ (order a p)) *** q) \ ~([-a, 1] divides q)" - apply (unfold divides_def) + "poly p \ poly [] \ \q. poly p = poly (([-a, 1] %^ order a p) *** q) \ \ [-a, 1] divides q" + unfolding divides_def apply (drule order2 [where a = a]) - apply (simp add: divides_def del: pexp_Suc pmult_Cons, safe) - apply (rule_tac x = q in exI, safe) + apply (simp add: divides_def del: pexp_Suc pmult_Cons) + apply safe + apply (rule_tac x = q in exI) + apply safe apply (drule_tac x = qa in spec) - apply (auto simp add: poly_mult fun_eq poly_exp ac_simps simp del: pmult_Cons) + apply (auto simp add: poly_mult fun_eq_iff poly_exp ac_simps simp del: pmult_Cons) done -text\Important composition properties of orders.\ +text \Important composition properties of orders.\ lemma order_mult: - "poly (p *** q) \ poly [] \ - order a (p *** q) = order a p + order (a::'a::{idom_char_0}) q" + fixes a :: "'a::idom_char_0" + shows "poly (p *** q) \ poly [] \ order a (p *** q) = order a p + order a q" apply (cut_tac a = a and p = "p *** q" and n = "order a p + order a q" in order) apply (auto simp add: poly_entire simp del: pmult_Cons) apply (drule_tac a = a in order2)+ apply safe - apply (simp add: divides_def fun_eq poly_exp_add poly_mult del: pmult_Cons, safe) + apply (simp add: divides_def fun_eq_iff poly_exp_add poly_mult del: pmult_Cons, safe) apply (rule_tac x = "qa *** qaa" in exI) apply (simp add: poly_mult ac_simps del: pmult_Cons) apply (drule_tac a = a in order_decomp)+ apply safe - apply (subgoal_tac "[-a,1] divides (qa *** qaa) ") + apply (subgoal_tac "[-a, 1] divides (qa *** qaa) ") apply (simp add: poly_primes del: pmult_Cons) apply (auto simp add: divides_def simp del: pmult_Cons) apply (rule_tac x = qb in exI) - apply (subgoal_tac "poly ([-a, 1] %^ (order a p) *** (qa *** qaa)) = poly ([-a, 1] %^ (order a p) *** ([-a, 1] *** qb))") - apply (drule poly_mult_left_cancel [THEN iffD1], force) - apply (subgoal_tac "poly ([-a, 1] %^ (order a q) *** ([-a, 1] %^ (order a p) *** (qa *** qaa))) = poly ([-a, 1] %^ (order a q) *** ([-a, 1] %^ (order a p) *** ([-a, 1] *** qb))) ") - apply (drule poly_mult_left_cancel [THEN iffD1], force) - apply (simp add: fun_eq poly_exp_add poly_mult ac_simps del: pmult_Cons) + apply (subgoal_tac "poly ([-a, 1] %^ (order a p) *** (qa *** qaa)) = + poly ([-a, 1] %^ (order a p) *** ([-a, 1] *** qb))") + apply (drule poly_mult_left_cancel [THEN iffD1]) + apply force + apply (subgoal_tac "poly ([-a, 1] %^ (order a q) *** ([-a, 1] %^ (order a p) *** (qa *** qaa))) = + poly ([-a, 1] %^ (order a q) *** ([-a, 1] %^ (order a p) *** ([-a, 1] *** qb))) ") + apply (drule poly_mult_left_cancel [THEN iffD1]) + apply force + apply (simp add: fun_eq_iff poly_exp_add poly_mult ac_simps del: pmult_Cons) done lemma (in idom_char_0) order_mult: @@ -777,7 +819,8 @@ apply (auto simp add: poly_entire simp del: pmult_Cons) apply (drule_tac a = a in order2)+ apply safe - apply (simp add: divides_def fun_eq poly_exp_add poly_mult del: pmult_Cons, safe) + apply (simp add: divides_def fun_eq_iff poly_exp_add poly_mult del: pmult_Cons) + apply safe apply (rule_tac x = "pmult qa qaa" in exI) apply (simp add: poly_mult ac_simps del: pmult_Cons) apply (drule_tac a = a in order_decomp)+ @@ -794,42 +837,43 @@ poly (pmult (pexp [uminus a, one] (order a q)) (pmult (pexp [uminus a, one] (order a p)) (pmult [uminus a, one] qb)))") apply (drule poly_mult_left_cancel [THEN iffD1], force) - apply (simp add: fun_eq poly_exp_add poly_mult ac_simps del: pmult_Cons) + apply (simp add: fun_eq_iff poly_exp_add poly_mult ac_simps del: pmult_Cons) done lemma (in idom_char_0) order_root2: "poly p \ poly [] \ poly p a = 0 \ order a p \ 0" by (rule order_root [THEN ssubst]) auto -lemma (in semiring_1) pmult_one[simp]: "[1] *** p = p" by auto +lemma (in semiring_1) pmult_one[simp]: "[1] *** p = p" + by auto lemma (in semiring_0) poly_Nil_zero: "poly [] = poly [0]" - by (simp add: fun_eq) + by (simp add: fun_eq_iff) lemma (in idom_char_0) rsquarefree_decomp: - "rsquarefree p \ poly p a = 0 \ - \q. poly p = poly ([-a, 1] *** q) \ poly q a \ 0" - apply (simp add: rsquarefree_def, safe) + "rsquarefree p \ poly p a = 0 \ \q. poly p = poly ([-a, 1] *** q) \ poly q a \ 0" + apply (simp add: rsquarefree_def) + apply safe apply (frule_tac a = a in order_decomp) apply (drule_tac x = a in spec) apply (drule_tac a = a in order_root2 [symmetric]) apply (auto simp del: pmult_Cons) apply (rule_tac x = q in exI, safe) - apply (simp add: poly_mult fun_eq) + apply (simp add: poly_mult fun_eq_iff) apply (drule_tac p1 = q in poly_linear_divides [THEN iffD1]) apply (simp add: divides_def del: pmult_Cons, safe) apply (drule_tac x = "[]" in spec) - apply (auto simp add: fun_eq) + apply (auto simp add: fun_eq_iff) done -text\Normalization of a polynomial.\ +text \Normalization of a polynomial.\ lemma (in semiring_0) poly_normalize[simp]: "poly (pnormalize p) = poly p" - by (induct p) (auto simp add: fun_eq) + by (induct p) (auto simp add: fun_eq_iff) -text\The degree of a polynomial.\ +text \The degree of a polynomial.\ -lemma (in semiring_0) lemma_degree_zero: "list_all (%c. c = 0) p \ pnormalize p = []" +lemma (in semiring_0) lemma_degree_zero: "list_all (\c. c = 0) p \ pnormalize p = []" by (induct p) auto lemma (in idom_char_0) degree_zero: @@ -838,18 +882,17 @@ using assms by (cases "pnormalize p = []") (auto simp add: degree_def poly_zero lemma_degree_zero) -lemma (in semiring_0) pnormalize_sing: "(pnormalize [x] = [x]) \ x \ 0" +lemma (in semiring_0) pnormalize_sing: "pnormalize [x] = [x] \ x \ 0" by simp -lemma (in semiring_0) pnormalize_pair: "y \ 0 \ (pnormalize [x, y] = [x, y])" +lemma (in semiring_0) pnormalize_pair: "y \ 0 \ pnormalize [x, y] = [x, y]" by simp -lemma (in semiring_0) pnormal_cons: "pnormal p \ pnormal (c#p)" +lemma (in semiring_0) pnormal_cons: "pnormal p \ pnormal (c # p)" unfolding pnormal_def by simp -lemma (in semiring_0) pnormal_tail: "p\[] \ pnormal (c#p) \ pnormal p" - unfolding pnormal_def by(auto split: split_if_asm) - +lemma (in semiring_0) pnormal_tail: "p \ [] \ pnormal (c # p) \ pnormal p" + unfolding pnormal_def by (auto split: split_if_asm) lemma (in semiring_0) pnormal_last_nonzero: "pnormal p \ last p \ 0" by (induct p) (simp_all add: pnormal_def split: split_if_asm) @@ -860,7 +903,6 @@ lemma (in semiring_0) pnormal_last_length: "0 < length p \ last p \ 0 \ pnormal p" by (induct p) (auto simp: pnormal_def split: split_if_asm) - lemma (in semiring_0) pnormal_id: "pnormal p \ 0 < length p \ last p \ 0" using pnormal_last_length pnormal_length pnormal_last_nonzero by blast @@ -868,42 +910,55 @@ "poly (c # cs) = poly (d # ds) \ c = d \ poly cs = poly ds" (is "?lhs \ ?rhs") proof - assume eq: ?lhs - hence "\x. poly ((c#cs) +++ -- (d#ds)) x = 0" - by (simp only: poly_minus poly_add algebra_simps) (simp add: algebra_simps) - hence "poly ((c#cs) +++ -- (d#ds)) = poly []" by(simp add: fun_eq_iff) - hence "c = d \ list_all (\x. x=0) ((cs +++ -- ds))" - unfolding poly_zero by (simp add: poly_minus_def algebra_simps) - hence "c = d \ (\x. poly (cs +++ -- ds) x = 0)" - unfolding poly_zero[symmetric] by simp - then show ?rhs by (simp add: poly_minus poly_add algebra_simps fun_eq_iff) -next - assume ?rhs - then show ?lhs by(simp add:fun_eq_iff) + show ?rhs if ?lhs + proof - + from that have "poly ((c # cs) +++ -- (d # ds)) x = 0" for x + by (simp only: poly_minus poly_add algebra_simps) (simp add: algebra_simps) + then have "poly ((c # cs) +++ -- (d # ds)) = poly []" + by (simp add: fun_eq_iff) + then have "c = d" and "list_all (\x. x = 0) ((cs +++ -- ds))" + unfolding poly_zero by (simp_all add: poly_minus_def algebra_simps) + from this(2) have "poly (cs +++ -- ds) x = 0" for x + unfolding poly_zero[symmetric] by simp + with \c = d\ show ?thesis + by (simp add: poly_minus poly_add algebra_simps fun_eq_iff) + qed + show ?lhs if ?rhs + using that by (simp add:fun_eq_iff) qed lemma (in idom_char_0) pnormalize_unique: "poly p = poly q \ pnormalize p = pnormalize q" proof (induct q arbitrary: p) case Nil - thus ?case by (simp only: poly_zero lemma_degree_zero) simp + then show ?case + by (simp only: poly_zero lemma_degree_zero) simp next case (Cons c cs p) - thus ?case + then show ?case proof (induct p) case Nil - hence "poly [] = poly (c#cs)" by blast - then have "poly (c#cs) = poly [] " by simp - thus ?case by (simp only: poly_zero lemma_degree_zero) simp + then have "poly [] = poly (c # cs)" + by blast + then have "poly (c#cs) = poly []" + by simp + then show ?case + by (simp only: poly_zero lemma_degree_zero) simp next case (Cons d ds) - hence eq: "poly (d # ds) = poly (c # cs)" by blast - hence eq': "\x. poly (d # ds) x = poly (c # cs) x" by simp - hence "poly (d # ds) 0 = poly (c # cs) 0" by blast - hence dc: "d = c" by auto + then have eq: "poly (d # ds) = poly (c # cs)" + by blast + then have eq': "\x. poly (d # ds) x = poly (c # cs) x" + by simp + then have "poly (d # ds) 0 = poly (c # cs) 0" + by blast + then have dc: "d = c" + by auto with eq have "poly ds = poly cs" unfolding poly_Cons_eq by simp - with Cons.prems have "pnormalize ds = pnormalize cs" by blast - with dc show ?case by simp + with Cons.prems have "pnormalize ds = pnormalize cs" + by blast + with dc show ?case + by simp qed qed @@ -912,11 +967,11 @@ shows "degree p = degree q" using pnormalize_unique[OF pq] unfolding degree_def by simp -lemma (in semiring_0) pnormalize_length: - "length (pnormalize p) \ length p" by (induct p) auto +lemma (in semiring_0) pnormalize_length: "length (pnormalize p) \ length p" + by (induct p) auto lemma (in semiring_0) last_linear_mul_lemma: - "last ((a %* p) +++ (x#(b %* p))) = (if p = [] then x else b * last p)" + "last ((a %* p) +++ (x # (b %* p))) = (if p = [] then x else b * last p)" apply (induct p arbitrary: a x b) apply auto apply (rename_tac a p aa x b) @@ -928,13 +983,14 @@ lemma (in semiring_1) last_linear_mul: assumes p: "p \ []" - shows "last ([a,1] *** p) = last p" + shows "last ([a, 1] *** p) = last p" proof - - from p obtain c cs where cs: "p = c#cs" by (cases p) auto - from cs have eq: "[a,1] *** p = (a %* (c#cs)) +++ (0#(1 %* (c#cs)))" + from p obtain c cs where cs: "p = c # cs" + by (cases p) auto + from cs have eq: "[a, 1] *** p = (a %* (c # cs)) +++ (0 # (1 %* (c # cs)))" by (simp add: poly_cmult_distr) - show ?thesis using cs - unfolding eq last_linear_mul_lemma by simp + show ?thesis + using cs unfolding eq last_linear_mul_lemma by simp qed lemma (in semiring_0) pnormalize_eq: "last p \ 0 \ pnormalize p = p" @@ -947,27 +1003,27 @@ using pnormalize_eq[of p] unfolding degree_def by simp lemma (in semiring_0) poly_Nil_ext: "poly [] = (\x. 0)" - by (rule ext) simp + by auto lemma (in idom_char_0) linear_mul_degree: assumes p: "poly p \ poly []" - shows "degree ([a,1] *** p) = degree p + 1" + shows "degree ([a, 1] *** p) = degree p + 1" proof - from p have pnz: "pnormalize p \ []" unfolding poly_zero lemma_degree_zero . from last_linear_mul[OF pnz, of a] last_pnormalize[OF pnz] have l0: "last ([a, 1] *** pnormalize p) \ 0" by simp + from last_pnormalize[OF pnz] last_linear_mul[OF pnz, of a] pnormal_degree[OF l0] pnormal_degree[OF last_pnormalize[OF pnz]] pnz - have th: "degree ([a,1] *** pnormalize p) = degree (pnormalize p) + 1" by simp have eqs: "poly ([a,1] *** pnormalize p) = poly ([a,1] *** p)" by (rule ext) (simp add: poly_mult poly_add poly_cmult) - from degree_unique[OF eqs] th - show ?thesis by (simp add: degree_unique[OF poly_normalize]) + from degree_unique[OF eqs] th show ?thesis + by (simp add: degree_unique[OF poly_normalize]) qed lemma (in idom_char_0) linear_pow_mul_degree: @@ -981,40 +1037,39 @@ using degree_unique[OF True] by (simp add: degree_def) next case False - then show ?thesis by (auto simp add: poly_Nil_ext) + then show ?thesis + by (auto simp add: poly_Nil_ext) qed next case (Suc n a p) - have eq: "poly ([a,1] %^(Suc n) *** p) = poly ([a,1] %^ n *** ([a,1] *** p))" + have eq: "poly ([a, 1] %^(Suc n) *** p) = poly ([a, 1] %^ n *** ([a, 1] *** p))" apply (rule ext) apply (simp add: poly_mult poly_add poly_cmult) - apply (simp add: ac_simps ac_simps distrib_left) + apply (simp add: ac_simps distrib_left) done note deq = degree_unique[OF eq] show ?case proof (cases "poly p = poly []") case True - with eq have eq': "poly ([a,1] %^(Suc n) *** p) = poly []" - apply - - apply (rule ext) - apply (simp add: poly_mult poly_cmult poly_add) - done + with eq have eq': "poly ([a, 1] %^(Suc n) *** p) = poly []" + by (auto simp add: poly_mult poly_cmult poly_add) from degree_unique[OF eq'] True show ?thesis by (simp add: degree_def) next case False then have ap: "poly ([a,1] *** p) \ poly []" using poly_mult_not_eq_poly_Nil unfolding poly_entire by auto - have eq: "poly ([a,1] %^(Suc n) *** p) = poly ([a,1]%^n *** ([a,1] *** p))" - by (rule ext, simp add: poly_mult poly_add poly_exp poly_cmult algebra_simps) - from ap have ap': "(poly ([a,1] *** p) = poly []) = False" + have eq: "poly ([a, 1] %^(Suc n) *** p) = poly ([a, 1]%^n *** ([a, 1] *** p))" + by (auto simp add: poly_mult poly_add poly_exp poly_cmult algebra_simps) + from ap have ap': "poly ([a, 1] *** p) = poly [] \ False" by blast - have th0: "degree ([a,1]%^n *** ([a,1] *** p)) = degree ([a,1] *** p) + n" + have th0: "degree ([a, 1]%^n *** ([a, 1] *** p)) = degree ([a, 1] *** p) + n" apply (simp only: Suc.hyps[of a "pmult [a,one] p"] ap') apply simp done from degree_unique[OF eq] ap False th0 linear_mul_degree[OF False, of a] - show ?thesis by (auto simp del: poly.simps) + show ?thesis + by (auto simp del: poly.simps) qed qed @@ -1023,24 +1078,25 @@ shows "order a p \ degree p" proof - from order2[OF p0, unfolded divides_def] - obtain q where q: "poly p = poly ([- a, 1]%^ (order a p) *** q)" by blast - { - assume "poly q = poly []" - with q p0 have False by (simp add: poly_mult poly_entire) - } + obtain q where q: "poly p = poly ([- a, 1]%^ (order a p) *** q)" + by blast + with q p0 have "poly q \ poly []" + by (simp add: poly_mult poly_entire) with degree_unique[OF q, unfolded linear_pow_mul_degree] show ?thesis by auto qed -text\Tidier versions of finiteness of roots.\ +text \Tidier versions of finiteness of roots.\ lemma (in idom_char_0) poly_roots_finite_set: "poly p \ poly [] \ finite {x. poly p x = 0}" unfolding poly_roots_finite . -text\bound for polynomial.\ -lemma poly_mono: "abs(x) \ k \ abs(poly p (x::'a::{linordered_idom})) \ poly (map abs p) k" +text \Bound for polynomial.\ +lemma poly_mono: + fixes x :: "'a::linordered_idom" + shows "abs x \ k \ abs (poly p x) \ poly (map abs p) k" apply (induct p) apply auto apply (rename_tac a p) @@ -1049,6 +1105,7 @@ apply (auto intro!: mult_mono simp add: abs_mult) done -lemma (in semiring_0) poly_Sing: "poly [c] x = c" by simp +lemma (in semiring_0) poly_Sing: "poly [c] x = c" + by simp end