# HG changeset patch # User paulson # Date 1605445693 0 # Node ID 00fce84413db8bd806976832638771d571156106 # Parent b5c23767ddd594f2b42645f7f7cd84c7dad50a3d trival diff -r b5c23767ddd5 -r 00fce84413db src/HOL/Bali/DefiniteAssignment.thy --- a/src/HOL/Bali/DefiniteAssignment.thy Sun Nov 15 13:06:41 2020 +0000 +++ b/src/HOL/Bali/DefiniteAssignment.thy Sun Nov 15 13:08:13 2020 +0000 @@ -566,7 +566,7 @@ in this rule. For example, if \<^term>\e\ is constantly \<^term>\True\ then \<^term>\assigns_if False e = UNIV\ and therefor \<^term>\nrm C2=UNIV\. So finally \<^term>\nrm A = nrm C1\. For the break maps this trick - workd too, because the trival break map will map all labels to + workd too, because the trivial break map will map all labels to \<^term>\UNIV\. In the example, if no break occurs in \<^term>\c2\ the break maps will trivially map to \<^term>\UNIV\ and if a break occurs it will map to \<^term>\UNIV\ too, because \<^term>\assigns_if False e = UNIV\. So diff -r b5c23767ddd5 -r 00fce84413db src/HOL/Computational_Algebra/Polynomial.thy --- a/src/HOL/Computational_Algebra/Polynomial.thy Sun Nov 15 13:06:41 2020 +0000 +++ b/src/HOL/Computational_Algebra/Polynomial.thy Sun Nov 15 13:08:13 2020 +0000 @@ -3131,7 +3131,7 @@ for p :: "'a::field poly" by (cases "p = 0") (auto simp: is_unit_triv is_unit_iff_degree) -lemma is_unit_monom_trival: "is_unit p \ monom (coeff p (degree p)) 0 = p" +lemma is_unit_monom_trivial: "is_unit p \ monom (coeff p (degree p)) 0 = p" for p :: "'a::field poly" by (cases p) (simp_all add: monom_0 is_unit_pCons_iff) diff -r b5c23767ddd5 -r 00fce84413db src/HOL/Divides.thy --- a/src/HOL/Divides.thy Sun Nov 15 13:06:41 2020 +0000 +++ b/src/HOL/Divides.thy Sun Nov 15 13:08:13 2020 +0000 @@ -440,7 +440,7 @@ by auto qed -lemma zmod_trival_iff: +lemma zmod_trivial_iff: fixes i k :: int shows "i mod k = i \ k = 0 \ 0 \ i \ i < k \ i \ 0 \ k < i" proof - @@ -488,7 +488,7 @@ using pos_mod_bound [of l k] apply linarith done with \l > 0\ have \(k mod l - 1) mod l = k mod l - 1\ - by (simp add: zmod_trival_iff) + by (simp add: zmod_trivial_iff) ultimately show ?thesis apply (simp only: zmod_zminus1_eq_if) apply (simp add: mod_eq_0_iff_dvd algebra_simps mod_simps) @@ -1240,7 +1240,7 @@ have \(k + 1) mod 2 ^ n = (k mod 2 ^ n + 1) mod 2 ^ n\ by (simp add: mod_simps) also have \\ = k mod 2 ^ n + 1\ - using * by (simp add: zmod_trival_iff) + using * by (simp add: zmod_trivial_iff) finally have \(k + 1) mod 2 ^ n = k mod 2 ^ n + 1\ . then show ?thesis by (simp add: take_bit_eq_mod) @@ -1259,7 +1259,7 @@ have \(k - 1) mod 2 ^ n = (k mod 2 ^ n - 1) mod 2 ^ n\ by (simp add: mod_simps) also have \\ = k mod 2 ^ n - 1\ - by (simp add: zmod_trival_iff) + by (simp add: zmod_trivial_iff) (use \k mod 2 ^ n < 2 ^ n\ * in linarith) finally have \(k - 1) mod 2 ^ n = k mod 2 ^ n - 1\ . then show ?thesis diff -r b5c23767ddd5 -r 00fce84413db src/HOL/Set.thy --- a/src/HOL/Set.thy Sun Nov 15 13:06:41 2020 +0000 +++ b/src/HOL/Set.thy Sun Nov 15 13:08:13 2020 +0000 @@ -383,7 +383,7 @@ unfolding Bex_def by blast lemma ball_triv [simp]: "(\x\A. P) \ ((\x. x \ A) \ P)" - \ \Trival rewrite rule.\ + \ \trivial rewrite rule.\ by (simp add: Ball_def) lemma bex_triv [simp]: "(\x\A. P) \ ((\x. x \ A) \ P)"