# HG changeset patch # User paulson # Date 992068926 -7200 # Node ID 01020b10c0a71d498db239c8823d2cf192b70526 # Parent a548865b1b6abcd91eab6e5067591b5ef6838406 simplified a proof using new dvd rules diff -r a548865b1b6a -r 01020b10c0a7 src/HOL/IMPP/EvenOdd.ML --- a/src/HOL/IMPP/EvenOdd.ML Sat Jun 09 08:41:25 2001 +0200 +++ b/src/HOL/IMPP/EvenOdd.ML Sat Jun 09 08:42:06 2001 +0200 @@ -12,9 +12,7 @@ Addsimps [even_0]; Goalw [even_def] "even 1 = False"; -by (Clarsimp_tac 1); -by (dtac dvd_imp_le 1); -by Auto_tac; +by (Simp_tac 1); qed "not_even_1"; Addsimps [not_even_1]; diff -r a548865b1b6a -r 01020b10c0a7 src/HOL/NumberTheory/Factorization.thy --- a/src/HOL/NumberTheory/Factorization.thy Sat Jun 09 08:41:25 2001 +0200 +++ b/src/HOL/NumberTheory/Factorization.thy Sat Jun 09 08:42:06 2001 +0200 @@ -258,11 +258,8 @@ lemma prime_dvd_mult_list [rule_format]: "p \ prime ==> p dvd (prod xs) --> (\m. m:set xs \ p dvd m)" apply (induct xs) - apply simp_all - apply (erule prime_nd_one) - apply (rule impI) - apply (drule prime_dvd_mult) - apply auto + apply (force simp add: prime_def) + apply (force dest: prime_dvd_mult) done lemma hd_xs_dvd_prod: