# HG changeset patch # User lcp # Date 789876038 -3600 # Node ID 013a16d3addb7d844e0227ec1287dd6d78f15914 # Parent b1dc15d860819023399fbf77761c594585b13857 Proved equivalence of Ord and Ord_alt. Proved ordertype_eq_imp_ord_iso, le_well_ord_Memrel, le_ordertype_Memrel, lt_oadd1, oadd_le_self, bij_0_sum, oadd_0, oadd_assoc, id_ord_iso_Memrel, ordertype_0. Now well_ord_Memrel follows from le_well_ord_Memrel and ordertype_Memrel follows from le_ordertype_Memrel. Proved simpler versions of Krzysztof's theorems Ord_oadd, ordertype_pred_subset, ordertype_pred_lt, ordertype_pred_unfold, bij_sum_0, bij_sum_succ, ordertype_sum_Memrel, lt_oadd_disj, oadd_inject. Deleted ordertype_subset: subsumed by ordertype_pred_unfold. Proved ordinal multiplication theorems Ord_omult, lt_omult, omult_oadd_lt, omult_unfold, omult_0, omult_0_left, omult_1, omult_1_left, oadd_omult_distrib, omult_succ, omult_assoc, omult_UN, omult_Limit, lt_omult1, omult_le_self, omult_le_mono1, omult_lt_mono2, omult_le_mono2, omult_le_mono, omult_lt_mono, omult_le_self2, omult_inject. diff -r b1dc15d86081 -r 013a16d3addb src/ZF/OrderType.ML --- a/src/ZF/OrderType.ML Wed Jan 11 18:47:03 1995 +0100 +++ b/src/ZF/OrderType.ML Thu Jan 12 03:00:38 1995 +0100 @@ -3,42 +3,49 @@ Author: Lawrence C Paulson, Cambridge University Computer Laboratory Copyright 1994 University of Cambridge -Order types in Zermelo-Fraenkel Set Theory +Order types and ordinal arithmetic in Zermelo-Fraenkel Set Theory + +Ordinal arithmetic is traditionally defined in terms of order types, as here. +But a definition by transfinite recursion would be much simpler! *) open OrderType; -(*** Proofs needing the combination of Ordinal.thy and Order.thy ***) +(**** Proofs needing the combination of Ordinal.thy and Order.thy ****) -goal OrderType.thy "!!i. Ord(i) ==> well_ord(i, Memrel(i))"; +val [prem] = goal OrderType.thy "j le i ==> well_ord(j, Memrel(i))"; by (rtac well_ordI 1); by (rtac (wf_Memrel RS wf_imp_wf_on) 1); -by (asm_simp_tac (ZF_ss addsimps [linear_def, Memrel_iff]) 1); -by (REPEAT (resolve_tac [ballI, Ord_linear] 1));; -by (REPEAT (eresolve_tac [asm_rl, Ord_in_Ord] 1));; -qed "well_ord_Memrel"; +by (resolve_tac [prem RS ltE] 1); +by (asm_simp_tac (ZF_ss addsimps [linear_def, Memrel_iff, + [ltI, prem] MRS lt_trans2 RS ltD]) 1); +by (REPEAT (resolve_tac [ballI, Ord_linear] 1)); +by (REPEAT (eresolve_tac [asm_rl, Ord_in_Ord] 1)); +qed "le_well_ord_Memrel"; + +(*"Ord(i) ==> well_ord(i, Memrel(i))"*) +bind_thm ("well_ord_Memrel", le_refl RS le_well_ord_Memrel); (*Kunen's Theorem 7.3 (i), page 16; see also Ordinal/Ord_in_Ord The smaller ordinal is an initial segment of the larger *) goalw OrderType.thy [pred_def, lt_def] - "!!i j. j j = pred(i, j, Memrel(i))"; + "!!i j. j pred(i, j, Memrel(i)) = j"; by (asm_simp_tac (ZF_ss addsimps [Memrel_iff]) 1); by (fast_tac (eq_cs addEs [Ord_trans]) 1); -qed "lt_eq_pred"; +qed "lt_pred_Memrel"; goalw OrderType.thy [pred_def,Memrel_def] - "!!A x. x:A ==> pred(A, x, Memrel(A)) = {b:A. b:x}"; + "!!A x. x:A ==> pred(A, x, Memrel(A)) = A Int x"; by (fast_tac eq_cs 1); qed "pred_Memrel"; goal OrderType.thy "!!i. [| j R"; -by (forward_tac [lt_eq_pred] 1); +by (forward_tac [lt_pred_Memrel] 1); by (etac ltE 1); by (rtac (well_ord_Memrel RS well_ord_iso_predE) 1 THEN assume_tac 3 THEN assume_tac 1); -by (etac subst 1); by (asm_full_simp_tac (ZF_ss addsimps [ord_iso_def]) 1); (*Combining the two simplifications causes looping*) by (asm_simp_tac (ZF_ss addsimps [Memrel_iff]) 1); @@ -53,7 +60,8 @@ by (REPEAT (eresolve_tac [asm_rl, ord_iso_sym, Ord_iso_implies_eq_lemma] 1)); qed "Ord_iso_implies_eq"; -(*** Ordermap and ordertype ***) + +(**** Ordermap and ordertype ****) goalw OrderType.thy [ordermap_def,ordertype_def] "ordermap(A,r) : A -> ordertype(A,r)"; @@ -62,7 +70,7 @@ by (REPEAT (assume_tac 1)); qed "ordermap_type"; -(** Unfolding of ordermap **) +(*** Unfolding of ordermap ***) (*Useful for cardinality reasoning; see CardinalArith.ML*) goalw OrderType.thy [ordermap_def, pred_def] @@ -86,7 +94,7 @@ (*pred-unfolded version. NOT suitable for rewriting -- loops!*) val ordermap_unfold = rewrite_rule [pred_def] ordermap_pred_unfold; -(** Showing that ordermap, ordertype yield ordinals **) +(*** Showing that ordermap, ordertype yield ordinals ***) fun ordermap_elim_tac i = EVERY [etac (ordermap_unfold RS equalityD1 RS subsetD RS RepFunE) i, @@ -117,7 +125,7 @@ by (fast_tac ZF_cs 1); qed "Ord_ordertype"; -(** ordermap preserves the orderings in both directions **) +(*** ordermap preserves the orderings in both directions ***) goal OrderType.thy "!!r. [| : r; wf[A](r); w: A; x: A |] ==> \ @@ -156,7 +164,7 @@ by (ALLGOALS (asm_full_simp_tac (ZF_ss addsimps [mem_not_refl]))); qed "ordermap_bij"; -(** Isomorphisms involving ordertype **) +(*** Isomorphisms involving ordertype ***) goalw OrderType.thy [ord_iso_def] "!!r. well_ord(A,r) ==> \ @@ -180,24 +188,47 @@ addSEs [ordertype_ord_iso]) 0 1); qed "ordertype_eq"; - -(** Unfolding of ordertype **) +goal OrderType.thy + "!!A B. [| ordertype(A,r) = ordertype(B,s); \ +\ well_ord(A,r); well_ord(B,s) \ +\ |] ==> EX f. f: ord_iso(A,r,B,s)"; +by (resolve_tac [exI] 1); +by (resolve_tac [ordertype_ord_iso RS ord_iso_trans] 1); +by (assume_tac 1); +by (eresolve_tac [ssubst] 1); +by (eresolve_tac [ordertype_ord_iso RS ord_iso_sym] 1); +qed "ordertype_eq_imp_ord_iso"; -goalw OrderType.thy [ordertype_def] - "ordertype(A,r) = {ordermap(A,r)`y . y : A}"; -by (rtac ([ordermap_type, subset_refl] MRS image_fun) 1); -qed "ordertype_unfold"; +(*** Basic equalities for ordertype ***) (*Ordertype of Memrel*) -goal OrderType.thy "!!i. Ord(i) ==> ordertype(i,Memrel(i)) = i"; +goal OrderType.thy "!!i. j le i ==> ordertype(j,Memrel(i)) = j"; by (resolve_tac [Ord_iso_implies_eq RS sym] 1); -by (resolve_tac [ordertype_ord_iso] 3); -by (REPEAT (ares_tac [well_ord_Memrel, Ord_ordertype] 1)); -qed "ordertype_Memrel"; +by (eresolve_tac [ltE] 1); +by (REPEAT (ares_tac [le_well_ord_Memrel, Ord_ordertype] 1)); +by (resolve_tac [ord_iso_trans] 1); +by (eresolve_tac [le_well_ord_Memrel RS ordertype_ord_iso] 2); +by (resolve_tac [id_bij RS ord_isoI] 1); +by (asm_simp_tac (ZF_ss addsimps [id_conv, Memrel_iff]) 1); +by (fast_tac (ZF_cs addEs [ltE, Ord_in_Ord, Ord_trans]) 1); +qed "le_ordertype_Memrel"; + +(*"Ord(i) ==> ordertype(i, Memrel(i)) = i"*) +bind_thm ("ordertype_Memrel", le_refl RS le_ordertype_Memrel); -(*Ordertype of rvimage*) +goal OrderType.thy "ordertype(0,r) = 0"; +by (resolve_tac [id_bij RS ord_isoI RS ordertype_eq RS trans] 1); +by (etac emptyE 1); +by (resolve_tac [well_ord_0] 1); +by (resolve_tac [Ord_0 RS ordertype_Memrel] 1); +qed "ordertype_0"; + +(*Ordertype of rvimage: [| f: bij(A,B); well_ord(B,s) |] ==> + ordertype(A, rvimage(A,f,s)) = ordertype(B,s) *) bind_thm ("bij_ordertype_vimage", ord_iso_rvimage RS ordertype_eq); +(*** A fundamental unfolding law for ordertype. ***) + (*Ordermap returns the same result if applied to an initial segment*) goal OrderType.thy "!!r. [| well_ord(A,r); y:A; z: pred(A,y,r) |] ==> \ @@ -215,15 +246,653 @@ by (fast_tac (eq_cs addSEs [trans_onD]) 1); qed "ordermap_pred_eq_ordermap"; -(*Lemma for proving there exist ever larger cardinals*) +goalw OrderType.thy [ordertype_def] + "ordertype(A,r) = {ordermap(A,r)`y . y : A}"; +by (rtac ([ordermap_type, subset_refl] MRS image_fun) 1); +qed "ordertype_unfold"; + +(** Theorems by Krzysztof Grabczewski; proofs simplified by lcp **) + +goal OrderType.thy + "!!r. [| well_ord(A,r); x:A |] ==> \ +\ ordertype(pred(A,x,r),r) <= ordertype(A,r)"; +by (asm_simp_tac (ZF_ss addsimps [ordertype_unfold, + pred_subset RSN (2, well_ord_subset)]) 1); +by (fast_tac (ZF_cs addIs [ordermap_pred_eq_ordermap, RepFun_eqI] + addEs [predE]) 1); +qed "ordertype_pred_subset"; + +goal OrderType.thy + "!!r. [| well_ord(A,r); x:A |] ==> \ +\ ordertype(pred(A,x,r),r) < ordertype(A,r)"; +by (resolve_tac [ordertype_pred_subset RS subset_imp_le RS leE] 1); +by (REPEAT (ares_tac [Ord_ordertype, well_ord_subset, pred_subset] 1)); +by (eresolve_tac [sym RS ordertype_eq_imp_ord_iso RS exE] 1); +by (eresolve_tac [well_ord_iso_predE] 3); +by (REPEAT (ares_tac [pred_subset, well_ord_subset] 1)); +qed "ordertype_pred_lt"; + +(*May rewrite with this -- provided no rules are supplied for proving that + well_ord(pred(A,x,r), r) *) +goal OrderType.thy + "!!A r. well_ord(A,r) ==> \ +\ ordertype(A,r) = {ordertype(pred(A,x,r),r). x:A}"; +by (safe_tac (eq_cs addSIs [ordertype_pred_lt RS ltD])); +by (asm_full_simp_tac + (ZF_ss addsimps [ordertype_def, + ordermap_bij RS bij_is_fun RS image_fun]) 1); +by (eresolve_tac [RepFunE] 1); +by (asm_full_simp_tac + (ZF_ss addsimps [well_ord_is_wf, ordermap_eq_image, + ordermap_type RS image_fun, + ordermap_pred_eq_ordermap, + pred_subset, subset_refl]) 1); +by (eresolve_tac [RepFunI] 1); +qed "ordertype_pred_unfold"; + + +(**** Alternative definition of ordinal ****) + +(*proof by Krzysztof Grabczewski*) +goalw OrderType.thy [Ord_alt_def] "!!i. Ord(i) ==> Ord_alt(i)"; +by (resolve_tac [conjI] 1); +by (eresolve_tac [well_ord_Memrel] 1); +by (rewrite_goals_tac [Ord_def, Transset_def, pred_def, Memrel_def]); +by (fast_tac eq_cs 1); +qed "Ord_is_Ord_alt"; + +(*proof by lcp*) +goalw OrderType.thy [Ord_alt_def, Ord_def, Transset_def, well_ord_def, + tot_ord_def, part_ord_def, trans_on_def] + "!!i. Ord_alt(i) ==> Ord(i)"; +by (asm_full_simp_tac (ZF_ss addsimps [Memrel_iff, pred_Memrel]) 1); +by (safe_tac ZF_cs); +by (fast_tac (ZF_cs addSDs [equalityD1]) 1); +by (subgoal_tac "xa: i" 1); +by (fast_tac (ZF_cs addSDs [equalityD1]) 2); +by (fast_tac (ZF_cs addSDs [equalityD1] + addSEs [bspec RS bspec RS bspec RS mp RS mp]) 1); +qed "Ord_alt_is_Ord"; + + +(**** Ordinal Addition ****) + +(*** Order Type calculations for radd ***) + +(** Addition with 0 **) + +goal OrderType.thy "(lam z:A+0. case(%x.x, %y.y, z)) : bij(A+0, A)"; +by (res_inst_tac [("d", "Inl")] lam_bijective 1); +by (safe_tac sum_cs); +by (ALLGOALS (asm_simp_tac sum_ss)); +qed "bij_sum_0"; + +goal OrderType.thy + "!!A r. well_ord(A,r) ==> ordertype(A+0, radd(A,r,0,s)) = ordertype(A,r)"; +by (resolve_tac [bij_sum_0 RS ord_isoI RS ordertype_eq] 1); +by (assume_tac 2); +by (asm_simp_tac ZF_ss 1); +by (REPEAT_FIRST (eresolve_tac [sumE, emptyE])); +by (asm_simp_tac (sum_ss addsimps [radd_Inl_iff, Memrel_iff]) 1); +qed "ordertype_sum_0_eq"; + +goal OrderType.thy "(lam z:0+A. case(%x.x, %y.y, z)) : bij(0+A, A)"; +by (res_inst_tac [("d", "Inr")] lam_bijective 1); +by (safe_tac sum_cs); +by (ALLGOALS (asm_simp_tac sum_ss)); +qed "bij_0_sum"; + +goal OrderType.thy + "!!A r. well_ord(A,r) ==> ordertype(0+A, radd(0,s,A,r)) = ordertype(A,r)"; +by (resolve_tac [bij_0_sum RS ord_isoI RS ordertype_eq] 1); +by (assume_tac 2); +by (asm_simp_tac ZF_ss 1); +by (REPEAT_FIRST (eresolve_tac [sumE, emptyE])); +by (asm_simp_tac (sum_ss addsimps [radd_Inr_iff, Memrel_iff]) 1); +qed "ordertype_0_sum_eq"; + +(** Initial segments of radd. Statements by Grabczewski **) + +(*In fact, pred(A+B, Inl(a), radd(A,r,B,s)) = pred(A,a,r)+0 *) +goalw OrderType.thy [pred_def] + "!!A B. a:A ==> \ +\ (lam x:pred(A,a,r). Inl(x)) \ +\ : bij(pred(A,a,r), pred(A+B, Inl(a), radd(A,r,B,s)))"; +by (res_inst_tac [("d", "case(%x.x, %y.y)")] lam_bijective 1); +by (safe_tac sum_cs); +by (ALLGOALS + (asm_full_simp_tac + (sum_ss addsimps [radd_Inl_iff, radd_Inr_Inl_iff]))); +qed "pred_Inl_bij"; + +goal OrderType.thy + "!!A B. [| a:A; well_ord(A,r) |] ==> \ +\ ordertype(pred(A+B, Inl(a), radd(A,r,B,s)), radd(A,r,B,s)) = \ +\ ordertype(pred(A,a,r), r)"; +by (resolve_tac [pred_Inl_bij RS ord_isoI RS ord_iso_sym RS ordertype_eq] 1); +by (REPEAT_FIRST (ares_tac [pred_subset, well_ord_subset])); +by (asm_full_simp_tac (ZF_ss addsimps [radd_Inl_iff, pred_def]) 1); +qed "ordertype_pred_Inl_eq"; + +goalw OrderType.thy [pred_def, id_def] + "!!A B. b:B ==> \ +\ id(A+pred(B,b,s)) \ +\ : bij(A+pred(B,b,s), pred(A+B, Inr(b), radd(A,r,B,s)))"; +by (res_inst_tac [("d", "%z.z")] lam_bijective 1); +by (safe_tac sum_cs); +by (ALLGOALS (asm_full_simp_tac radd_ss)); +qed "pred_Inr_bij"; + +goal OrderType.thy + "!!A B. [| b:B; well_ord(A,r); well_ord(B,s) |] ==> \ +\ ordertype(pred(A+B, Inr(b), radd(A,r,B,s)), radd(A,r,B,s)) = \ +\ ordertype(A+pred(B,b,s), radd(A,r,pred(B,b,s),s))"; +by (resolve_tac [pred_Inr_bij RS ord_isoI RS ord_iso_sym RS ordertype_eq] 1); +by (REPEAT_FIRST (ares_tac [well_ord_radd, pred_subset, well_ord_subset])); +by (asm_full_simp_tac (ZF_ss addsimps [pred_def, id_def]) 1); +by (REPEAT_FIRST (eresolve_tac [sumE])); +by (ALLGOALS (asm_simp_tac radd_ss)); +qed "ordertype_pred_Inr_eq"; + +(*** Basic laws for ordinal addition ***) + +goalw OrderType.thy [oadd_def] + "!!i j. [| Ord(i); Ord(j) |] ==> Ord(i++j)"; +by (REPEAT (ares_tac [Ord_ordertype, well_ord_radd, well_ord_Memrel] 1)); +qed "Ord_oadd"; + +(** Ordinal addition with zero **) + +goalw OrderType.thy [oadd_def] "!!i. Ord(i) ==> i++0 = i"; +by (asm_simp_tac (ZF_ss addsimps [Memrel_0, ordertype_sum_0_eq, + ordertype_Memrel, well_ord_Memrel]) 1); +qed "oadd_0"; + +goalw OrderType.thy [oadd_def] "!!i. Ord(i) ==> 0++i = i"; +by (asm_simp_tac (ZF_ss addsimps [Memrel_0, ordertype_0_sum_eq, + ordertype_Memrel, well_ord_Memrel]) 1); +qed "oadd_0_left"; + + +(*** Further properties of ordinal addition. Statements by Grabczewski, + proofs by lcp. ***) + +goalw OrderType.thy [oadd_def] "!!i j k. [| k k < i++j"; +by (resolve_tac [ltE] 1 THEN assume_tac 1); +by (resolve_tac [ltI] 1); +by (REPEAT (ares_tac [Ord_ordertype, well_ord_radd, well_ord_Memrel] 2)); +by (asm_simp_tac (ZF_ss addsimps [ordertype_pred_unfold, + well_ord_radd, well_ord_Memrel]) 1); +by (resolve_tac [RepFun_eqI] 1); +by (eresolve_tac [InlI] 2); +by (asm_simp_tac + (ZF_ss addsimps [ordertype_pred_Inl_eq, well_ord_Memrel, + lt_pred_Memrel, leI RS le_ordertype_Memrel]) 1); +qed "lt_oadd1"; + +goal OrderType.thy "!!i j. [| Ord(i); Ord(j) |] ==> i le i++j"; +by (resolve_tac [all_lt_imp_le] 1); +by (REPEAT (ares_tac [Ord_oadd, lt_oadd1] 1)); +qed "oadd_le_self"; + +(** A couple of strange but necessary results! **) + +goal OrderType.thy + "!!A B. A<=B ==> id(A) : ord_iso(A, Memrel(A), A, Memrel(B))"; +by (resolve_tac [id_bij RS ord_isoI] 1); +by (asm_simp_tac (ZF_ss addsimps [id_conv, Memrel_iff]) 1); +by (fast_tac ZF_cs 1); +qed "id_ord_iso_Memrel"; + +goal OrderType.thy + "!!k. [| well_ord(A,r); k \ +\ ordertype(A+k, radd(A, r, k, Memrel(j))) = \ +\ ordertype(A+k, radd(A, r, k, Memrel(k)))"; +by (eresolve_tac [ltE] 1); +by (resolve_tac [ord_iso_refl RS sum_ord_iso_cong RS ordertype_eq] 1); +by (eresolve_tac [OrdmemD RS id_ord_iso_Memrel RS ord_iso_sym] 1); +by (REPEAT_FIRST (ares_tac [well_ord_radd, well_ord_Memrel])); +qed "ordertype_sum_Memrel"; + +goalw OrderType.thy [oadd_def] "!!i j k. [| k i++k < i++j"; +by (resolve_tac [ltE] 1 THEN assume_tac 1); +by (resolve_tac [ordertype_pred_unfold RS equalityD2 RS subsetD RS ltI] 1); +by (REPEAT_FIRST (ares_tac [Ord_ordertype, well_ord_radd, well_ord_Memrel])); +by (resolve_tac [RepFun_eqI] 1); +by (eresolve_tac [InrI] 2); +by (asm_simp_tac + (ZF_ss addsimps [ordertype_pred_Inr_eq, well_ord_Memrel, + lt_pred_Memrel, leI RS le_ordertype_Memrel, + ordertype_sum_Memrel]) 1); +qed "oadd_lt_mono2"; + +goal OrderType.thy "!!i j. [| i++j = i++k; Ord(i); Ord(j); Ord(k) |] ==> j=k"; +by (rtac Ord_linear_lt 1); +by (REPEAT_SOME assume_tac); +by (ALLGOALS + (dresolve_tac [oadd_lt_mono2] THEN' assume_tac THEN' + asm_full_simp_tac (ZF_ss addsimps [lt_not_refl]))); +qed "oadd_inject"; + +goalw OrderType.thy [oadd_def] + "!!i j k. [| k < i++j; Ord(i); Ord(j) |] ==> k (i++j)++k = i++(j++k)"; +by (resolve_tac [ordertype_eq RS trans] 1); +by (rtac ([ordertype_ord_iso RS ord_iso_sym, ord_iso_refl] MRS + sum_ord_iso_cong) 1); +by (REPEAT (ares_tac [well_ord_radd, well_ord_Memrel, Ord_ordertype] 1)); +by (resolve_tac [sum_assoc_ord_iso RS ordertype_eq RS trans] 1); +by (rtac ([ord_iso_refl, ordertype_ord_iso] MRS sum_ord_iso_cong RS + ordertype_eq) 2); +by (REPEAT (ares_tac [well_ord_radd, well_ord_Memrel, Ord_ordertype] 1)); +qed "oadd_assoc"; + +goal OrderType.thy + "!!i j. [| Ord(i); Ord(j) |] ==> i++j = i Un (UN k:j. {i++k})"; +by (rtac (subsetI RS equalityI) 1); +by (eresolve_tac [ltI RS lt_oadd_disj RS disjE] 1); +by (REPEAT (ares_tac [Ord_oadd] 1)); +by (fast_tac (ZF_cs addSEs [ltE]) 1); +by (fast_tac ZF_cs 1); +by (safe_tac ZF_cs); +by (ALLGOALS + (asm_full_simp_tac (ZF_ss addsimps [Ord_mem_iff_lt, Ord_oadd]))); +by (fast_tac (ZF_cs addIs [lt_oadd1]) 1); +by (fast_tac (ZF_cs addIs [oadd_lt_mono2]) 1); +qed "oadd_unfold"; + +goal OrderType.thy "!!i. Ord(i) ==> i++1 = succ(i)"; +by (asm_simp_tac (ZF_ss addsimps [oadd_unfold, Ord_1, oadd_0]) 1); +by (fast_tac eq_cs 1); +qed "oadd_1"; + goal OrderType.thy - "!!r. [| well_ord(A,r); i: ordertype(A,r) |] ==> \ -\ EX B. B<=A & i = ordertype(B,r)"; -by (dresolve_tac [ordertype_unfold RS equalityD1 RS subsetD] 1); -by (etac RepFunE 1); -by (res_inst_tac [("x", "pred(A,y,r)")] exI 1); + "!!i. [| Ord(i); Ord(j) |] ==> i++succ(j) = succ(i++j)"; +by (asm_simp_tac + (ZF_ss addsimps [oadd_1 RS sym, Ord_oadd, oadd_assoc, Ord_1]) 1); +qed "oadd_succ"; + + +(** Ordinal addition with limit ordinals **) + +val prems = goal OrderType.thy + "[| Ord(i); !!x. x:A ==> Ord(j(x)); a:A |] ==> \ +\ i ++ (UN x:A. j(x)) = (UN x:A. i++j(x))"; +by (fast_tac (eq_cs addIs (prems @ [ltI, Ord_UN, Ord_oadd, + lt_oadd1 RS ltD, oadd_lt_mono2 RS ltD]) + addSEs [ltE, ltI RS lt_oadd_disj RS disjE]) 1); +qed "oadd_UN"; + +goal OrderType.thy + "!!i j. [| Ord(i); Limit(j) |] ==> i++j = (UN k:j. i++k)"; +by (forward_tac [Limit_has_0 RS ltD] 1); +by (asm_simp_tac (ZF_ss addsimps [Limit_is_Ord RS Ord_in_Ord, + oadd_UN RS sym, Union_eq_UN RS sym, + Limit_Union_eq]) 1); +qed "oadd_Limit"; + +(** Order/monotonicity properties of ordinal addition **) + +goal OrderType.thy "!!i j. [| Ord(i); Ord(j) |] ==> i le j++i"; +by (eres_inst_tac [("i","i")] trans_induct3 1); +by (asm_simp_tac (ZF_ss addsimps [oadd_0, Ord_0_le]) 1); +by (asm_simp_tac (ZF_ss addsimps [oadd_succ, succ_leI]) 1); +by (asm_simp_tac (ZF_ss addsimps [oadd_Limit]) 1); +by (resolve_tac [le_trans] 1); +by (resolve_tac [le_implies_UN_le_UN] 2); +by (fast_tac ZF_cs 2); +by (asm_simp_tac (ZF_ss addsimps [Union_eq_UN RS sym, Limit_Union_eq, + le_refl, Limit_is_Ord]) 1); +qed "oadd_le_self2"; + +goal OrderType.thy "!!i j k. [| k le j; Ord(i) |] ==> k++i le j++i"; +by (forward_tac [lt_Ord] 1); +by (forward_tac [le_Ord2] 1); +by (eresolve_tac [trans_induct3] 1); +by (asm_simp_tac (ZF_ss addsimps [oadd_0]) 1); +by (asm_simp_tac (ZF_ss addsimps [oadd_succ, succ_le_iff]) 1); +by (asm_simp_tac (ZF_ss addsimps [oadd_Limit]) 1); +by (resolve_tac [le_implies_UN_le_UN] 1); +by (fast_tac ZF_cs 1); +qed "oadd_le_mono1"; + +goal OrderType.thy "!!i j. [| i' le i; j' i'++j' < i++j"; +by (resolve_tac [lt_trans1] 1); +by (REPEAT (eresolve_tac [asm_rl, oadd_le_mono1, oadd_lt_mono2, ltE, + Ord_succD] 1)); +qed "oadd_lt_mono"; + +goal OrderType.thy "!!i j. [| i' le i; j' le j |] ==> i'++j' le i++j"; +by (asm_simp_tac (ZF_ss addsimps [oadd_succ RS sym, le_Ord2, oadd_lt_mono]) 1); +qed "oadd_le_mono"; + + +(** Ordinal subtraction; the difference is ordertype(j-i, Memrel(j)). + Probably simpler to define the difference recursively! +**) + +goal OrderType.thy + "!!A B. A<=B ==> (lam y:B. if(y:A, Inl(y), Inr(y))) : bij(B, A+(B-A))"; +by (res_inst_tac [("d", "case(%x.x, %y.y)")] lam_bijective 1); +by (fast_tac (sum_cs addSIs [if_type]) 1); +by (fast_tac (ZF_cs addSIs [case_type]) 1); +by (eresolve_tac [sumE] 2); +by (ALLGOALS (asm_simp_tac (sum_ss setloop split_tac [expand_if]))); +qed "bij_sum_Diff"; + +goal OrderType.thy + "!!i j. i le j ==> \ +\ ordertype(i+(j-i), radd(i,Memrel(j),j-i,Memrel(j))) = \ +\ ordertype(j, Memrel(j))"; +by (safe_tac (ZF_cs addSDs [le_subset_iff RS iffD1])); +by (resolve_tac [bij_sum_Diff RS ord_isoI RS ord_iso_sym RS ordertype_eq] 1); +by (eresolve_tac [well_ord_Memrel] 3); +by (assume_tac 1); +by (asm_simp_tac + (radd_ss setloop split_tac [expand_if] addsimps [Memrel_iff]) 1); +by (forw_inst_tac [("j", "y")] Ord_in_Ord 1 THEN assume_tac 1); +by (forw_inst_tac [("j", "x")] Ord_in_Ord 1 THEN assume_tac 1); +by (asm_simp_tac (ZF_ss addsimps [Ord_mem_iff_lt, lt_Ord, not_lt_iff_le]) 1); +by (fast_tac (ZF_cs addEs [lt_trans2, lt_trans]) 1); +qed "ordertype_sum_Diff"; + +goalw OrderType.thy [oadd_def] + "!!i j. i le j ==> \ +\ i ++ ordertype(j-i, Memrel(j)) = \ +\ ordertype(i+(j-i), radd(i,Memrel(j),j-i,Memrel(j)))"; +by (safe_tac (ZF_cs addSDs [le_subset_iff RS iffD1])); +by (resolve_tac [sum_ord_iso_cong RS ordertype_eq] 1); +by (eresolve_tac [id_ord_iso_Memrel] 1); +by (resolve_tac [ordertype_ord_iso RS ord_iso_sym] 1); +by (REPEAT (ares_tac [well_ord_radd, well_ord_Memrel RS well_ord_subset, + Diff_subset] 1)); +qed "oadd_ordertype_Diff"; + +goal OrderType.thy + "!!i j. i le j ==> i ++ ordertype(j-i, Memrel(j)) = j"; +by (asm_simp_tac (ZF_ss addsimps [oadd_ordertype_Diff, ordertype_sum_Diff, + ordertype_Memrel, lt_Ord2 RS Ord_succD]) 1); +qed "oadd_inverse"; + +(*By oadd_inject, the difference between i and j is unique.*) + + +(**** Ordinal Multiplication ****) + +goalw OrderType.thy [omult_def] + "!!i j. [| Ord(i); Ord(j) |] ==> Ord(i**j)"; +by (REPEAT (ares_tac [Ord_ordertype, well_ord_rmult, well_ord_Memrel] 1)); +qed "Ord_omult"; + +(*** A useful unfolding law ***) + +goalw OrderType.thy [pred_def] + "!!A B. [| a:A; b:B |] ==> \ +\ pred(A*B, , rmult(A,r,B,s)) = \ +\ pred(A,a,r)*B Un ({a} * pred(B,b,s))"; +by (safe_tac eq_cs); +by (ALLGOALS (asm_full_simp_tac (ZF_ss addsimps [rmult_iff]))); +by (ALLGOALS (fast_tac ZF_cs)); +qed "pred_Pair_eq"; + +goal OrderType.thy + "!!A B. [| a:A; b:B; well_ord(A,r); well_ord(B,s) |] ==> \ +\ ordertype(pred(A*B, , rmult(A,r,B,s)), rmult(A,r,B,s)) = \ +\ ordertype(pred(A,a,r)*B + pred(B,b,s), \ +\ radd(A*B, rmult(A,r,B,s), B, s))"; +by (asm_simp_tac (ZF_ss addsimps [pred_Pair_eq]) 1); +by (resolve_tac [ordertype_eq RS sym] 1); +by (resolve_tac [prod_sum_singleton_ord_iso] 1); +by (REPEAT_FIRST (ares_tac [pred_subset, well_ord_rmult RS well_ord_subset])); +by (fast_tac (ZF_cs addSEs [predE]) 1); +qed "ordertype_pred_Pair_eq"; + +goalw OrderType.thy [oadd_def, omult_def] + "!!i j. [| i' \ +\ ordertype(pred(i*j, , rmult(i,Memrel(i),j,Memrel(j))), \ +\ rmult(i,Memrel(i),j,Memrel(j))) = \ +\ j**i' ++ j'"; +by (asm_simp_tac (ZF_ss addsimps [ordertype_pred_Pair_eq, lt_pred_Memrel, ltD, lt_Ord2, well_ord_Memrel]) 1); +by (resolve_tac [trans] 1); +by (resolve_tac [ordertype_ord_iso RS sum_ord_iso_cong RS ordertype_eq] 2); +by (resolve_tac [ord_iso_refl] 3); +by (resolve_tac [id_bij RS ord_isoI RS ordertype_eq] 1); +by (REPEAT_FIRST (eresolve_tac [SigmaE, sumE, ltE, ssubst])); +by (REPEAT_FIRST (ares_tac [well_ord_rmult, well_ord_radd, well_ord_Memrel, + Ord_ordertype])); +by (ALLGOALS + (asm_simp_tac (radd_ss addsimps [rmult_iff, id_conv, Memrel_iff]))); +by (safe_tac ZF_cs); +by (ALLGOALS (fast_tac (ZF_cs addEs [Ord_trans]))); +qed "ordertype_pred_Pair_lemma"; + +goalw OrderType.thy [omult_def] + "!!i j. [| Ord(i); Ord(j); k \ +\ EX j' i'. k = j**i' ++ j' & j' j**i' ++ j' < j**i"; +by (resolve_tac [ltI] 1); +by (asm_full_simp_tac + (ZF_ss addsimps [ordertype_pred_unfold, + well_ord_rmult, well_ord_Memrel, lt_Ord2]) 1); +by (resolve_tac [RepFun_eqI] 1); +by (fast_tac (ZF_cs addSEs [ltE]) 2); +by (asm_simp_tac + (ZF_ss addsimps [ordertype_pred_Pair_lemma, ltI, symmetric omult_def]) 1); by (asm_simp_tac - (ZF_ss addsimps [pred_subset, well_ord_is_wf RS ordermap_pred_unfold, - ordertype_unfold, ordermap_pred_eq_ordermap]) 1); -qed "ordertype_subset"; + (ZF_ss addsimps [Ord_ordertype, well_ord_rmult, well_ord_Memrel, + lt_Ord2]) 1); +qed "omult_oadd_lt"; + +goal OrderType.thy + "!!i j. [| Ord(i); Ord(j) |] ==> j**i = (UN j':j. UN i':i. {j**i' ++ j'})"; +by (rtac (subsetI RS equalityI) 1); +by (resolve_tac [lt_omult RS exE] 1); +by (eresolve_tac [ltI] 3); +by (REPEAT (ares_tac [Ord_omult] 1)); +by (fast_tac (ZF_cs addSEs [ltE]) 1); +by (fast_tac (ZF_cs addIs [omult_oadd_lt RS ltD, ltI]) 1); +qed "omult_unfold"; + +(*** Basic laws for ordinal multiplication ***) + +(** Ordinal multiplication by zero **) + +goalw OrderType.thy [omult_def] "i**0 = 0"; +by (asm_simp_tac (ZF_ss addsimps [ordertype_0]) 1); +qed "omult_0"; + +goalw OrderType.thy [omult_def] "0**i = 0"; +by (asm_simp_tac (ZF_ss addsimps [ordertype_0]) 1); +qed "omult_0_left"; + +(** Ordinal multiplication by 1 **) + +goalw OrderType.thy [omult_def] "!!i. Ord(i) ==> i**1 = i"; +by (resolve_tac [ord_isoI RS ordertype_eq RS trans] 1); +by (res_inst_tac [("c", "snd"), ("d", "%z.<0,z>")] lam_bijective 1); +by (REPEAT_FIRST (eresolve_tac [snd_type, SigmaE, succE, emptyE, + well_ord_Memrel, ordertype_Memrel])); +by (ALLGOALS (asm_simp_tac (ZF_ss addsimps [rmult_iff, Memrel_iff]))); +qed "omult_1"; + +goalw OrderType.thy [omult_def] "!!i. Ord(i) ==> 1**i = i"; +by (resolve_tac [ord_isoI RS ordertype_eq RS trans] 1); +by (res_inst_tac [("c", "fst"), ("d", "%z.")] lam_bijective 1); +by (REPEAT_FIRST (eresolve_tac [fst_type, SigmaE, succE, emptyE, + well_ord_Memrel, ordertype_Memrel])); +by (ALLGOALS (asm_simp_tac (ZF_ss addsimps [rmult_iff, Memrel_iff]))); +qed "omult_1_left"; + +(** Distributive law for ordinal multiplication and addition **) + +goalw OrderType.thy [omult_def, oadd_def] + "!!i. [| Ord(i); Ord(j); Ord(k) |] ==> i**(j++k) = (i**j)++(i**k)"; +by (resolve_tac [ordertype_eq RS trans] 1); +by (rtac ([ordertype_ord_iso RS ord_iso_sym, ord_iso_refl] MRS + prod_ord_iso_cong) 1); +by (REPEAT (ares_tac [well_ord_rmult, well_ord_radd, well_ord_Memrel, + Ord_ordertype] 1)); +by (rtac (sum_prod_distrib_ord_iso RS ordertype_eq RS trans) 1); +by (rtac ordertype_eq 2); +by (rtac ([ordertype_ord_iso, ordertype_ord_iso] MRS sum_ord_iso_cong) 2); +by (REPEAT (ares_tac [well_ord_rmult, well_ord_radd, well_ord_Memrel, + Ord_ordertype] 1)); +qed "oadd_omult_distrib"; + +goal OrderType.thy "!!i. [| Ord(i); Ord(j) |] ==> i**succ(j) = (i**j)++i"; +by (asm_simp_tac + (ZF_ss addsimps [oadd_1 RS sym, omult_1, oadd_omult_distrib, Ord_1]) 1); +qed "omult_succ"; + +(** Associative law **) + +goalw OrderType.thy [omult_def] + "!!i j k. [| Ord(i); Ord(j); Ord(k) |] ==> (i**j)**k = i**(j**k)"; +by (resolve_tac [ordertype_eq RS trans] 1); +by (rtac ([ord_iso_refl, ordertype_ord_iso RS ord_iso_sym] MRS + prod_ord_iso_cong) 1); +by (REPEAT (ares_tac [well_ord_rmult, well_ord_Memrel] 1)); +by (resolve_tac [prod_assoc_ord_iso RS ord_iso_sym RS + ordertype_eq RS trans] 1); +by (rtac ([ordertype_ord_iso, ord_iso_refl] MRS prod_ord_iso_cong RS + ordertype_eq) 2); +by (REPEAT (ares_tac [well_ord_rmult, well_ord_Memrel, Ord_ordertype] 1)); +qed "omult_assoc"; + + +(** Ordinal multiplication with limit ordinals **) + +val prems = goal OrderType.thy + "[| Ord(i); !!x. x:A ==> Ord(j(x)) |] ==> \ +\ i ** (UN x:A. j(x)) = (UN x:A. i**j(x))"; +by (asm_simp_tac (ZF_ss addsimps (prems@[Ord_UN, omult_unfold])) 1); +by (fast_tac eq_cs 1); +qed "omult_UN"; +goal OrderType.thy + "!!i j. [| Ord(i); Limit(j) |] ==> i**j = (UN k:j. i**k)"; +by (asm_simp_tac + (ZF_ss addsimps [Limit_is_Ord RS Ord_in_Ord, omult_UN RS sym, + Union_eq_UN RS sym, Limit_Union_eq]) 1); +qed "omult_Limit"; + + +(*** Ordering/monotonicity properties of ordinal multiplication ***) + +(*As a special case we have "[| 0 0 < i**j" *) +goal OrderType.thy "!!i j. [| k k < i**j"; +by (safe_tac (ZF_cs addSEs [ltE] addSIs [ltI, Ord_omult])); +by (asm_simp_tac (ZF_ss addsimps [omult_unfold]) 1); +by (REPEAT (eresolve_tac [UN_I] 1)); +by (asm_simp_tac (ZF_ss addsimps [omult_0, oadd_0_left]) 1); +qed "lt_omult1"; + +goal OrderType.thy "!!i j. [| Ord(i); 0 i le i**j"; +by (resolve_tac [all_lt_imp_le] 1); +by (REPEAT (ares_tac [Ord_omult, lt_omult1, lt_Ord2] 1)); +qed "omult_le_self"; + +goal OrderType.thy "!!i j k. [| k le j; Ord(i) |] ==> k**i le j**i"; +by (forward_tac [lt_Ord] 1); +by (forward_tac [le_Ord2] 1); +by (eresolve_tac [trans_induct3] 1); +by (asm_simp_tac (ZF_ss addsimps [omult_0, le_refl, Ord_0]) 1); +by (asm_simp_tac (ZF_ss addsimps [omult_succ, oadd_le_mono]) 1); +by (asm_simp_tac (ZF_ss addsimps [omult_Limit]) 1); +by (resolve_tac [le_implies_UN_le_UN] 1); +by (fast_tac ZF_cs 1); +qed "omult_le_mono1"; + +goal OrderType.thy "!!i j k. [| k i**k < i**j"; +by (resolve_tac [ltI] 1); +by (asm_simp_tac (ZF_ss addsimps [omult_unfold, lt_Ord2]) 1); +by (safe_tac (ZF_cs addSEs [ltE] addSIs [Ord_omult])); +by (REPEAT (eresolve_tac [UN_I] 1)); +by (asm_simp_tac (ZF_ss addsimps [omult_0, oadd_0, Ord_omult]) 1); +qed "omult_lt_mono2"; + +goal OrderType.thy "!!i j k. [| k le j; Ord(i) |] ==> i**k le i**j"; +by (resolve_tac [subset_imp_le] 1); +by (safe_tac (ZF_cs addSEs [ltE, make_elim Ord_succD] addSIs [Ord_omult])); +by (asm_full_simp_tac (ZF_ss addsimps [omult_unfold]) 1); +by (safe_tac ZF_cs); +by (eresolve_tac [UN_I] 1); +by (deepen_tac (ZF_cs addEs [Ord_trans]) 0 1); +qed "omult_le_mono2"; + +goal OrderType.thy "!!i j. [| i' le i; j' le j |] ==> i'**j' le i**j"; +by (resolve_tac [le_trans] 1); +by (REPEAT (eresolve_tac [asm_rl, omult_le_mono1, omult_le_mono2, ltE, + Ord_succD] 1)); +qed "omult_le_mono"; + +goal OrderType.thy + "!!i j. [| i' le i; j' i'**j' < i**j"; +by (resolve_tac [lt_trans1] 1); +by (REPEAT (eresolve_tac [asm_rl, omult_le_mono1, omult_lt_mono2, ltE, + Ord_succD] 1)); +qed "omult_lt_mono"; + +goal OrderType.thy + "!!i j. [| i' le i; j' le j |] ==> i'++j' le i++j"; +by (asm_simp_tac (ZF_ss addsimps [oadd_succ RS sym, le_Ord2, oadd_lt_mono]) 1); +qed "oadd_le_mono"; + +goal OrderType.thy "!!i j. [| Ord(i); 0 i le j**i"; +by (forward_tac [lt_Ord2] 1); +by (eres_inst_tac [("i","i")] trans_induct3 1); +by (asm_simp_tac (ZF_ss addsimps [omult_0, Ord_0 RS le_refl]) 1); +by (asm_simp_tac (ZF_ss addsimps [omult_succ, succ_le_iff]) 1); +by (eresolve_tac [lt_trans1] 1); +by (res_inst_tac [("b", "j**x")] (oadd_0 RS subst) 1 THEN + rtac oadd_lt_mono2 2); +by (REPEAT (ares_tac [Ord_omult] 1)); +by (asm_simp_tac (ZF_ss addsimps [omult_Limit]) 1); +by (resolve_tac [le_trans] 1); +by (resolve_tac [le_implies_UN_le_UN] 2); +by (fast_tac ZF_cs 2); +by (asm_simp_tac (ZF_ss addsimps [Union_eq_UN RS sym, Limit_Union_eq, + Limit_is_Ord RS le_refl]) 1); +qed "omult_le_self2"; + + +(** Further properties of ordinal multiplication **) + +goal OrderType.thy "!!i j. [| i**j = i**k; 0 j=k"; +by (rtac Ord_linear_lt 1); +by (REPEAT_SOME assume_tac); +by (ALLGOALS + (dresolve_tac [omult_lt_mono2] THEN' assume_tac THEN' + asm_full_simp_tac (ZF_ss addsimps [lt_not_refl]))); +qed "omult_inject"; + +