# HG changeset patch # User paulson # Date 1677583187 0 # Node ID 02af8a1b97f6cbd660d2a81188681e59c083b716 # Parent c2013f617a7081d1aa9f213a7fb0ebd9a925583c Fixed a presentation error diff -r c2013f617a70 -r 02af8a1b97f6 src/HOL/Algebra/Coset.thy --- a/src/HOL/Algebra/Coset.thy Mon Feb 27 17:09:59 2023 +0000 +++ b/src/HOL/Algebra/Coset.thy Tue Feb 28 11:19:47 2023 +0000 @@ -1609,7 +1609,7 @@ shows "H <#> N = H" using group.set_mult_carrier_idem[OF subgroup.subgroup_is_group[OF HG group_axioms] NG] by simp -text \A normal subgroup is commutative with set_mult\ +text \A normal subgroup is commutative with set multiplication\ lemma (in group) commut_normal: assumes "subgroup H G" and "N\G" shows "H<#>N = N<#>H"