# HG changeset patch # User wenzelm # Date 1003521685 -7200 # Node ID 02d75712061d71e6b58d8b80763997b821908166 # Parent b2a9853ec6ddd7110acff5a20df20e5c38d1acf8 got rid of ML proof scripts for Product_Type; diff -r b2a9853ec6dd -r 02d75712061d src/HOL/Product_Type.ML --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/Product_Type.ML Fri Oct 19 22:01:25 2001 +0200 @@ -0,0 +1,97 @@ + +(* legacy ML bindings *) + +val Collect_split = thm "Collect_split"; +val Compl_Times_UNIV1 = thm "Compl_Times_UNIV1"; +val Compl_Times_UNIV2 = thm "Compl_Times_UNIV2"; +val PairE = thm "PairE"; +val PairE_lemma = thm "PairE_lemma"; +val Pair_Rep_inject = thm "Pair_Rep_inject"; +val Pair_def = thm "Pair_def"; +val Pair_eq = thm "Pair_eq"; +val Pair_fst_snd_eq = thm "Pair_fst_snd_eq"; +val Pair_inject = thm "Pair_inject"; +val ProdI = thm "ProdI"; +val SetCompr_Sigma_eq = thm "SetCompr_Sigma_eq"; +val SigmaD1 = thm "SigmaD1"; +val SigmaD2 = thm "SigmaD2"; +val SigmaE = thm "SigmaE"; +val SigmaE2 = thm "SigmaE2"; +val SigmaI = thm "SigmaI"; +val Sigma_Diff_distrib1 = thm "Sigma_Diff_distrib1"; +val Sigma_Diff_distrib2 = thm "Sigma_Diff_distrib2"; +val Sigma_Int_distrib1 = thm "Sigma_Int_distrib1"; +val Sigma_Int_distrib2 = thm "Sigma_Int_distrib2"; +val Sigma_Un_distrib1 = thm "Sigma_Un_distrib1"; +val Sigma_Un_distrib2 = thm "Sigma_Un_distrib2"; +val Sigma_Union = thm "Sigma_Union"; +val Sigma_def = thm "Sigma_def"; +val Sigma_empty1 = thm "Sigma_empty1"; +val Sigma_empty2 = thm "Sigma_empty2"; +val Sigma_mono = thm "Sigma_mono"; +val The_split = thm "The_split"; +val The_split_eq = thm "The_split_eq"; +val The_split_eq = thm "The_split_eq"; +val Times_Diff_distrib1 = thm "Times_Diff_distrib1"; +val Times_Int_distrib1 = thm "Times_Int_distrib1"; +val Times_Un_distrib1 = thm "Times_Un_distrib1"; +val Times_eq_cancel2 = thm "Times_eq_cancel2"; +val Times_subset_cancel2 = thm "Times_subset_cancel2"; +val UNIV_Times_UNIV = thm "UNIV_Times_UNIV"; +val UN_Times_distrib = thm "UN_Times_distrib"; +val Unity_def = thm "Unity_def"; +val cond_split_eta = thm "cond_split_eta"; +val fst_conv = thm "fst_conv"; +val fst_def = thm "fst_def"; +val fst_eqD = thm "fst_eqD"; +val inj_on_Abs_Prod = thm "inj_on_Abs_Prod"; +val injective_fst_snd = thm "injective_fst_snd"; +val mem_Sigma_iff = thm "mem_Sigma_iff"; +val mem_splitE = thm "mem_splitE"; +val mem_splitI = thm "mem_splitI"; +val mem_splitI2 = thm "mem_splitI2"; +val prod_eqI = thm "prod_eqI"; +val prod_fun = thm "prod_fun"; +val prod_fun_compose = thm "prod_fun_compose"; +val prod_fun_def = thm "prod_fun_def"; +val prod_fun_ident = thm "prod_fun_ident"; +val prod_fun_imageE = thm "prod_fun_imageE"; +val prod_fun_imageI = thm "prod_fun_imageI"; +val prod_induct = thm "prod_induct"; +val snd_conv = thm "snd_conv"; +val snd_def = thm "snd_def"; +val snd_eqD = thm "snd_eqD"; +val split = thm "split"; +val splitD = thm "splitD"; +val splitD' = thm "splitD'"; +val splitE = thm "splitE"; +val splitE' = thm "splitE'"; +val splitE2 = thm "splitE2"; +val splitI = thm "splitI"; +val splitI2 = thm "splitI2"; +val splitI2' = thm "splitI2'"; +val split_Pair_apply = thm "split_Pair_apply"; +val split_beta = thm "split_beta"; +val split_conv = thm "split_conv"; +val split_def = thm "split_def"; +val split_eta = thm "split_eta"; +val split_eta_SetCompr = thm "split_eta_SetCompr"; +val split_eta_SetCompr2 = thm "split_eta_SetCompr2"; +val split_paired_All = thm "split_paired_All"; +val split_paired_Ball_Sigma = thm "split_paired_Ball_Sigma"; +val split_paired_Bex_Sigma = thm "split_paired_Bex_Sigma"; +val split_paired_Ex = thm "split_paired_Ex"; +val split_paired_The = thm "split_paired_The"; +val split_paired_all = thm "split_paired_all"; +val split_part = thm "split_part"; +val split_split = thm "split_split"; +val split_split_asm = thm "split_split_asm"; +val split_tupled_all = thms "split_tupled_all"; +val split_weak_cong = thm "split_weak_cong"; +val surj_pair = thm "surj_pair"; +val surjective_pairing = thm "surjective_pairing"; +val unit_abs_eta_conv = thm "unit_abs_eta_conv"; +val unit_all_eq1 = thm "unit_all_eq1"; +val unit_all_eq2 = thm "unit_all_eq2"; +val unit_eq = thm "unit_eq"; +val unit_induct = thm "unit_induct"; diff -r b2a9853ec6dd -r 02d75712061d src/HOL/Product_Type.thy --- a/src/HOL/Product_Type.thy Fri Oct 19 22:00:08 2001 +0200 +++ b/src/HOL/Product_Type.thy Fri Oct 19 22:01:25 2001 +0200 @@ -4,13 +4,62 @@ Copyright 1992 University of Cambridge *) -header {* Finite products (including unit) *} +header {* Cartesian products *} theory Product_Type = Fun -files ("Product_Type_lemmas.ML") ("Tools/split_rule.ML"): +files ("Tools/split_rule.ML"): + +subsection {* Unit *} + +typedef unit = "{True}" +proof + show "True : ?unit" by blast +qed + +constdefs + Unity :: unit ("'(')") + "() == Abs_unit True" + +lemma unit_eq: "u = ()" + by (induct u) (simp add: unit_def Unity_def) + +text {* + Simplification procedure for @{thm [source] unit_eq}. Cannot use + this rule directly --- it loops! +*} + +ML_setup {* + local + val unit_pat = Thm.cterm_of (Theory.sign_of (the_context ())) (Free ("x", HOLogic.unitT)); + val unit_meta_eq = standard (mk_meta_eq (thm "unit_eq")); + fun proc _ _ t = + if HOLogic.is_unit t then None + else Some unit_meta_eq + in val unit_eq_proc = Simplifier.mk_simproc "unit_eq" [unit_pat] proc end; + + Addsimprocs [unit_eq_proc]; +*} + +lemma unit_all_eq1: "(!!x::unit. PROP P x) == PROP P ()" + by simp + +lemma unit_all_eq2: "(!!x::unit. PROP P) == PROP P" + by (rule triv_forall_equality) + +lemma unit_induct [induct type: unit]: "P () ==> P x" + by simp + +text {* + This rewrite counters the effect of @{text unit_eq_proc} on @{term + [source] "%u::unit. f u"}, replacing it by @{term [source] + f} rather than by @{term [source] "%u. f ()"}. +*} + +lemma unit_abs_eta_conv [simp]: "(%u::unit. f ()) = f" + by (rule ext) simp -subsection {* Products *} +subsection {* Pairs *} subsubsection {* Type definition *} @@ -21,7 +70,7 @@ global typedef (Prod) - ('a, 'b) "*" (infixr 20) + ('a, 'b) "*" (infixr 20) = "{f. EX a b. f = Pair_Rep (a::'a) (b::'b)}" proof fix a b show "Pair_Rep a b : ?Prod" @@ -98,24 +147,78 @@ Sigma_def: "Sigma A B == UN x:A. UN y:B(x). {(x, y)}" -subsection {* Unit *} +subsubsection {* Lemmas and tool setup *} + +lemma ProdI: "Pair_Rep a b : Prod" + by (unfold Prod_def) blast + +lemma Pair_Rep_inject: "Pair_Rep a b = Pair_Rep a' b' ==> a = a' & b = b'" + apply (unfold Pair_Rep_def) + apply (drule fun_cong [THEN fun_cong]) + apply blast + done -typedef unit = "{True}" -proof - show "True : ?unit" - by blast +lemma inj_on_Abs_Prod: "inj_on Abs_Prod Prod" + apply (rule inj_on_inverseI) + apply (erule Abs_Prod_inverse) + done + +lemma Pair_inject: + "(a, b) = (a', b') ==> (a = a' ==> b = b' ==> R) ==> R" +proof - + case rule_context [unfolded Pair_def] + show ?thesis + apply (rule inj_on_Abs_Prod [THEN inj_onD, THEN Pair_Rep_inject, THEN conjE]) + apply (rule rule_context ProdI)+ + . qed -constdefs - Unity :: unit ("'(')") - "() == Abs_unit True" +lemma Pair_eq [iff]: "((a, b) = (a', b')) = (a = a' & b = b')" + by (blast elim!: Pair_inject) + +lemma fst_conv [simp]: "fst (a, b) = a" + by (unfold fst_def) blast + +lemma snd_conv [simp]: "snd (a, b) = b" + by (unfold snd_def) blast +lemma fst_eqD: "fst (x, y) = a ==> x = a" + by simp + +lemma snd_eqD: "snd (x, y) = a ==> y = a" + by simp + +lemma PairE_lemma: "EX x y. p = (x, y)" + apply (unfold Pair_def) + apply (rule Rep_Prod [unfolded Prod_def, THEN CollectE]) + apply (erule exE, erule exE, rule exI, rule exI) + apply (rule Rep_Prod_inverse [symmetric, THEN trans]) + apply (erule arg_cong) + done -subsection {* Lemmas and tool setup *} +lemma PairE [cases type: *]: "(!!x y. p = (x, y) ==> Q) ==> Q" + by (insert PairE_lemma [of p]) blast + +ML_setup {* + local val PairE = thm "PairE" in + fun pair_tac s = + EVERY' [res_inst_tac [("p", s)] PairE, hyp_subst_tac, K prune_params_tac]; + end; +*} -use "Product_Type_lemmas.ML" +lemma surjective_pairing: "p = (fst p, snd p)" + -- {* Do not add as rewrite rule: invalidates some proofs in IMP *} + by (cases p) simp + +declare surjective_pairing [symmetric, simp] -lemma (*split_paired_all:*) "(!!x. PROP P x) == (!!a b. PROP P (a, b))" (* FIXME unused *) +lemma surj_pair [simp]: "EX x y. z = (x, y)" + apply (rule exI) + apply (rule exI) + apply (rule surjective_pairing) + done + +lemma split_paired_all: "(!!x. PROP P x) == (!!a b. PROP P (a, b))" proof fix a b assume "!!x. PROP P x" @@ -127,12 +230,457 @@ thus "PROP P x" by simp qed +lemmas split_tupled_all = split_paired_all unit_all_eq2 + +text {* + The rule @{thm [source] split_paired_all} does not work with the + Simplifier because it also affects premises in congrence rules, + where this can lead to premises of the form @{text "!!a b. ... = + ?P(a, b)"} which cannot be solved by reflexivity. +*} + +ML_setup " + (* replace parameters of product type by individual component parameters *) + val safe_full_simp_tac = generic_simp_tac true (true, false, false); + local (* filtering with exists_paired_all is an essential optimization *) + fun exists_paired_all (Const (\"all\", _) $ Abs (_, T, t)) = + can HOLogic.dest_prodT T orelse exists_paired_all t + | exists_paired_all (t $ u) = exists_paired_all t orelse exists_paired_all u + | exists_paired_all (Abs (_, _, t)) = exists_paired_all t + | exists_paired_all _ = false; + val ss = HOL_basic_ss + addsimps [thm \"split_paired_all\", thm \"unit_all_eq2\", thm \"unit_abs_eta_conv\"] + addsimprocs [unit_eq_proc]; + in + val split_all_tac = SUBGOAL (fn (t, i) => + if exists_paired_all t then safe_full_simp_tac ss i else no_tac); + val unsafe_split_all_tac = SUBGOAL (fn (t, i) => + if exists_paired_all t then full_simp_tac ss i else no_tac); + fun split_all th = + if exists_paired_all (#prop (Thm.rep_thm th)) then full_simplify ss th else th; + end; + +claset_ref() := claset() addSbefore (\"split_all_tac\", split_all_tac); +" + +lemma split_paired_All [simp]: "(ALL x. P x) = (ALL a b. P (a, b))" + -- {* @{text "[iff]"} is not a good idea because it makes @{text blast} loop *} + by fast + +lemma prod_induct [induct type: *]: "!!x. (!!a b. P (a, b)) ==> P x" + by fast + +lemma split_paired_Ex [simp]: "(EX x. P x) = (EX a b. P (a, b))" + by fast + +lemma split_conv [simp]: "split c (a, b) = c a b" + by (simp add: split_def) + +lemmas split = split_conv -- {* for backwards compatibility *} + +lemmas splitI = split_conv [THEN iffD2, standard] +lemmas splitD = split_conv [THEN iffD1, standard] + +lemma split_Pair_apply: "split (%x y. f (x, y)) = f" + -- {* Subsumes the old @{text split_Pair} when @{term f} is the identity function. *} + apply (rule ext) + apply (tactic {* pair_tac "x" 1 *}) + apply simp + done + +lemma split_paired_The: "(THE x. P x) = (THE (a, b). P (a, b))" + -- {* Can't be added to simpset: loops! *} + by (simp add: split_Pair_apply) + +lemma The_split: "The (split P) = (THE xy. P (fst xy) (snd xy))" + by (simp add: split_def) + +lemma Pair_fst_snd_eq: "!!s t. (s = t) = (fst s = fst t & snd s = snd t)" + apply (simp only: split_tupled_all) + apply simp + done + +lemma prod_eqI [intro?]: "fst p = fst q ==> snd p = snd q ==> p = q" + by (simp add: Pair_fst_snd_eq) + +lemma split_weak_cong: "p = q ==> split c p = split c q" + -- {* Prevents simplification of @{term c}: much faster *} + by (erule arg_cong) + +lemma split_eta: "(%(x, y). f (x, y)) = f" + apply (rule ext) + apply (simp only: split_tupled_all) + apply (rule split_conv) + done + +lemma cond_split_eta: "(!!x y. f x y = g (x, y)) ==> (%(x, y). f x y) = g" + by (simp add: split_eta) + +text {* + Simplification procedure for @{thm [source] cond_split_eta}. Using + @{thm [source] split_eta} as a rewrite rule is not general enough, + and using @{thm [source] cond_split_eta} directly would render some + existing proofs very inefficient; similarly for @{text + split_beta}. *} + +ML_setup {* + +local + val cond_split_eta = thm "cond_split_eta"; + fun Pair_pat k 0 (Bound m) = (m = k) + | Pair_pat k i (Const ("Pair", _) $ Bound m $ t) = i > 0 andalso + m = k+i andalso Pair_pat k (i-1) t + | Pair_pat _ _ _ = false; + fun no_args k i (Abs (_, _, t)) = no_args (k+1) i t + | no_args k i (t $ u) = no_args k i t andalso no_args k i u + | no_args k i (Bound m) = m < k orelse m > k+i + | no_args _ _ _ = true; + fun split_pat tp i (Abs (_,_,t)) = if tp 0 i t then Some (i,t) else None + | split_pat tp i (Const ("split", _) $ Abs (_, _, t)) = split_pat tp (i+1) t + | split_pat tp i _ = None; + fun metaeq sg lhs rhs = mk_meta_eq (prove_goalw_cterm [] + (cterm_of sg (HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs,rhs)))) + (K [simp_tac (HOL_basic_ss addsimps [cond_split_eta]) 1])); + val sign = sign_of (the_context ()); + fun simproc name patstr = Simplifier.mk_simproc name + [Thm.read_cterm sign (patstr, HOLogic.termT)]; + + val beta_patstr = "split f z"; + val eta_patstr = "split f"; + fun beta_term_pat k i (Abs (_, _, t)) = beta_term_pat (k+1) i t + | beta_term_pat k i (t $ u) = Pair_pat k i (t $ u) orelse + (beta_term_pat k i t andalso beta_term_pat k i u) + | beta_term_pat k i t = no_args k i t; + fun eta_term_pat k i (f $ arg) = no_args k i f andalso Pair_pat k i arg + | eta_term_pat _ _ _ = false; + fun subst arg k i (Abs (x, T, t)) = Abs (x, T, subst arg (k+1) i t) + | subst arg k i (t $ u) = if Pair_pat k i (t $ u) then incr_boundvars k arg + else (subst arg k i t $ subst arg k i u) + | subst arg k i t = t; + fun beta_proc sg _ (s as Const ("split", _) $ Abs (_, _, t) $ arg) = + (case split_pat beta_term_pat 1 t of + Some (i,f) => Some (metaeq sg s (subst arg 0 i f)) + | None => None) + | beta_proc _ _ _ = None; + fun eta_proc sg _ (s as Const ("split", _) $ Abs (_, _, t)) = + (case split_pat eta_term_pat 1 t of + Some (_,ft) => Some (metaeq sg s (let val (f $ arg) = ft in f end)) + | None => None) + | eta_proc _ _ _ = None; +in + val split_beta_proc = simproc "split_beta" beta_patstr beta_proc; + val split_eta_proc = simproc "split_eta" eta_patstr eta_proc; +end; + +Addsimprocs [split_beta_proc, split_eta_proc]; +*} + +lemma split_beta: "(%(x, y). P x y) z = P (fst z) (snd z)" + by (subst surjective_pairing, rule split_conv) + +lemma split_split: "R (split c p) = (ALL x y. p = (x, y) --> R (c x y))" + -- {* For use with @{text split} and the Simplifier. *} + apply (subst surjective_pairing) + apply (subst split_conv) + apply blast + done + +text {* + @{thm [source] split_split} could be declared as @{text "[split]"} + done after the Splitter has been speeded up significantly; + precompute the constants involved and don't do anything unless the + current goal contains one of those constants. +*} + +lemma split_split_asm: "R (split c p) = (~(EX x y. p = (x, y) & (~R (c x y))))" + apply (subst split_split) + apply simp + done + + +text {* + \medskip @{term split} used as a logical connective or set former. + + \medskip These rules are for use with @{text blast}; could instead + call @{text simp} using @{thm [source] split} as rewrite. *} + +lemma splitI2: "!!p. [| !!a b. p = (a, b) ==> c a b |] ==> split c p" + apply (simp only: split_tupled_all) + apply (simp (no_asm_simp)) + done + +lemma splitI2': "!!p. [| !!a b. (a, b) = p ==> c a b x |] ==> split c p x" + apply (simp only: split_tupled_all) + apply (simp (no_asm_simp)) + done + +lemma splitE: "split c p ==> (!!x y. p = (x, y) ==> c x y ==> Q) ==> Q" + by (induct p) (auto simp add: split_def) + +lemma splitE': "split c p z ==> (!!x y. p = (x, y) ==> c x y z ==> Q) ==> Q" + by (induct p) (auto simp add: split_def) + +lemma splitE2: + "[| Q (split P z); !!x y. [|z = (x, y); Q (P x y)|] ==> R |] ==> R" +proof - + assume q: "Q (split P z)" + assume r: "!!x y. [|z = (x, y); Q (P x y)|] ==> R" + show R + apply (rule r surjective_pairing)+ + apply (rule split_beta [THEN subst], rule q) + done +qed + +lemma splitD': "split R (a,b) c ==> R a b c" + by simp + +lemma mem_splitI: "z: c a b ==> z: split c (a, b)" + by simp + +lemma mem_splitI2: "!!p. [| !!a b. p = (a, b) ==> z: c a b |] ==> z: split c p" + apply (simp only: split_tupled_all) + apply simp + done + +lemma mem_splitE: "[| z: split c p; !!x y. [| p = (x,y); z: c x y |] ==> Q |] ==> Q" +proof - + case rule_context [unfolded split_def] + show ?thesis by (rule rule_context surjective_pairing)+ +qed + +declare mem_splitI2 [intro!] mem_splitI [intro!] splitI2' [intro!] splitI2 [intro!] splitI [intro!] +declare mem_splitE [elim!] splitE' [elim!] splitE [elim!] + +ML_setup " +local (* filtering with exists_p_split is an essential optimization *) + fun exists_p_split (Const (\"split\",_) $ _ $ (Const (\"Pair\",_)$_$_)) = true + | exists_p_split (t $ u) = exists_p_split t orelse exists_p_split u + | exists_p_split (Abs (_, _, t)) = exists_p_split t + | exists_p_split _ = false; + val ss = HOL_basic_ss addsimps [thm \"split_conv\"]; +in +val split_conv_tac = SUBGOAL (fn (t, i) => + if exists_p_split t then safe_full_simp_tac ss i else no_tac); +end; +(* This prevents applications of splitE for already splitted arguments leading + to quite time-consuming computations (in particular for nested tuples) *) +claset_ref() := claset() addSbefore (\"split_conv_tac\", split_conv_tac); +" + +lemma split_eta_SetCompr [simp]: "(%u. EX x y. u = (x, y) & P (x, y)) = P" + apply (rule ext) + apply fast + done + +lemma split_eta_SetCompr2 [simp]: "(%u. EX x y. u = (x, y) & P x y) = split P" + apply (rule ext) + apply fast + done + +lemma split_part [simp]: "(%(a,b). P & Q a b) = (%ab. P & split Q ab)" + -- {* Allows simplifications of nested splits in case of independent predicates. *} + apply (rule ext) + apply blast + done + +lemma The_split_eq [simp]: "(THE (x',y'). x = x' & y = y') = (x, y)" + by blast + +(* +the following would be slightly more general, +but cannot be used as rewrite rule: +### Cannot add premise as rewrite rule because it contains (type) unknowns: +### ?y = .x +Goal "[| P y; !!x. P x ==> x = y |] ==> (@(x',y). x = x' & P y) = (x,y)" +by (rtac some_equality 1); +by ( Simp_tac 1); +by (split_all_tac 1); +by (Asm_full_simp_tac 1); +qed "The_split_eq"; +*) + +lemma injective_fst_snd: "!!x y. [|fst x = fst y; snd x = snd y|] ==> x = y" + by auto + + +text {* + \bigskip @{term prod_fun} --- action of the product functor upon + functions. +*} + +lemma prod_fun [simp]: "prod_fun f g (a, b) = (f a, g b)" + by (simp add: prod_fun_def) + +lemma prod_fun_compose: "prod_fun (f1 o f2) (g1 o g2) = (prod_fun f1 g1 o prod_fun f2 g2)" + apply (rule ext) + apply (tactic {* pair_tac "x" 1 *}) + apply simp + done + +lemma prod_fun_ident [simp]: "prod_fun (%x. x) (%y. y) = (%z. z)" + apply (rule ext) + apply (tactic {* pair_tac "z" 1 *}) + apply simp + done + +lemma prod_fun_imageI [intro]: "(a, b) : r ==> (f a, g b) : prod_fun f g ` r" + apply (rule image_eqI) + apply (rule prod_fun [symmetric]) + apply assumption + done + +lemma prod_fun_imageE [elim!]: + "[| c: (prod_fun f g)`r; !!x y. [| c=(f(x),g(y)); (x,y):r |] ==> P + |] ==> P" +proof - + case rule_context + assume major: "c: (prod_fun f g)`r" + show ?thesis + apply (rule major [THEN imageE]) + apply (rule_tac p = x in PairE) + apply (rule rule_context) + prefer 2 + apply blast + apply (blast intro: prod_fun) + done +qed + + +text {* + \bigskip Disjoint union of a family of sets -- Sigma. +*} + +lemma SigmaI [intro!]: "[| a:A; b:B(a) |] ==> (a,b) : Sigma A B" + by (unfold Sigma_def) blast + + +lemma SigmaE: + "[| c: Sigma A B; + !!x y.[| x:A; y:B(x); c=(x,y) |] ==> P + |] ==> P" + -- {* The general elimination rule. *} + by (unfold Sigma_def) blast + +text {* + Elimination of @{term "(a, b) : A \ B"} -- introduces no + eigenvariables. +*} + +lemma SigmaD1: "(a, b) : Sigma A B ==> a : A" + apply (erule SigmaE) + apply blast + done + +lemma SigmaD2: "(a, b) : Sigma A B ==> b : B a" + apply (erule SigmaE) + apply blast + done + +lemma SigmaE2: + "[| (a, b) : Sigma A B; + [| a:A; b:B(a) |] ==> P + |] ==> P" + by (blast dest: SigmaD1 SigmaD2) + +declare SigmaE [elim!] SigmaE2 [elim!] + +lemma Sigma_mono: "[| A <= C; !!x. x:A ==> B x <= D x |] ==> Sigma A B <= Sigma C D" + by blast + +lemma Sigma_empty1 [simp]: "Sigma {} B = {}" + by blast + +lemma Sigma_empty2 [simp]: "A <*> {} = {}" + by blast + +lemma UNIV_Times_UNIV [simp]: "UNIV <*> UNIV = UNIV" + by auto + +lemma Compl_Times_UNIV1 [simp]: "- (UNIV <*> A) = UNIV <*> (-A)" + by auto + +lemma Compl_Times_UNIV2 [simp]: "- (A <*> UNIV) = (-A) <*> UNIV" + by auto + +lemma mem_Sigma_iff [iff]: "((a,b): Sigma A B) = (a:A & b:B(a))" + by blast + +lemma Times_subset_cancel2: "x:C ==> (A <*> C <= B <*> C) = (A <= B)" + by blast + +lemma Times_eq_cancel2: "x:C ==> (A <*> C = B <*> C) = (A = B)" + by (blast elim: equalityE) + +lemma SetCompr_Sigma_eq: + "Collect (split (%x y. P x & Q x y)) = (SIGMA x:Collect P. Collect (Q x))" + by blast + +text {* + \bigskip Complex rules for Sigma. +*} + +lemma Collect_split [simp]: "{(a,b). P a & Q b} = Collect P <*> Collect Q" + by blast + +lemma UN_Times_distrib: + "(UN (a,b):(A <*> B). E a <*> F b) = (UNION A E) <*> (UNION B F)" + -- {* Suggested by Pierre Chartier *} + by blast + +lemma split_paired_Ball_Sigma [simp]: + "(ALL z: Sigma A B. P z) = (ALL x:A. ALL y: B x. P(x,y))" + by blast + +lemma split_paired_Bex_Sigma [simp]: + "(EX z: Sigma A B. P z) = (EX x:A. EX y: B x. P(x,y))" + by blast + +lemma Sigma_Un_distrib1: "(SIGMA i:I Un J. C(i)) = (SIGMA i:I. C(i)) Un (SIGMA j:J. C(j))" + by blast + +lemma Sigma_Un_distrib2: "(SIGMA i:I. A(i) Un B(i)) = (SIGMA i:I. A(i)) Un (SIGMA i:I. B(i))" + by blast + +lemma Sigma_Int_distrib1: "(SIGMA i:I Int J. C(i)) = (SIGMA i:I. C(i)) Int (SIGMA j:J. C(j))" + by blast + +lemma Sigma_Int_distrib2: "(SIGMA i:I. A(i) Int B(i)) = (SIGMA i:I. A(i)) Int (SIGMA i:I. B(i))" + by blast + +lemma Sigma_Diff_distrib1: "(SIGMA i:I - J. C(i)) = (SIGMA i:I. C(i)) - (SIGMA j:J. C(j))" + by blast + +lemma Sigma_Diff_distrib2: "(SIGMA i:I. A(i) - B(i)) = (SIGMA i:I. A(i)) - (SIGMA i:I. B(i))" + by blast + +lemma Sigma_Union: "Sigma (Union X) B = (UN A:X. Sigma A B)" + by blast + +text {* + Non-dependent versions are needed to avoid the need for higher-order + matching, especially when the rules are re-oriented. +*} + +lemma Times_Un_distrib1: "(A Un B) <*> C = (A <*> C) Un (B <*> C)" + by blast + +lemma Times_Int_distrib1: "(A Int B) <*> C = (A <*> C) Int (B <*> C)" + by blast + +lemma Times_Diff_distrib1: "(A - B) <*> C = (A <*> C) - (B <*> C)" + by blast + + lemma pair_imageI [intro]: "(a, b) : A ==> f a b : (%(a, b). f a b) ` A" apply (rule_tac x = "(a, b)" in image_eqI) apply auto done +text {* + Setup of internal @{text split_rule}. +*} + constdefs internal_split :: "('a => 'b => 'c) => 'a * 'b => 'c" "internal_split == split" diff -r b2a9853ec6dd -r 02d75712061d src/HOL/Tools/split_rule.ML --- a/src/HOL/Tools/split_rule.ML Fri Oct 19 22:00:08 2001 +0200 +++ b/src/HOL/Tools/split_rule.ML Fri Oct 19 22:01:25 2001 +0200 @@ -26,6 +26,10 @@ (** theory context references **) +val split_conv = thm "split_conv"; +val fst_conv = thm "fst_conv"; +val snd_conv = thm "snd_conv"; + fun internal_split_const (Ta, Tb, Tc) = Const ("Product_Type.internal_split", [[Ta, Tb] ---> Tc, HOLogic.mk_prodT (Ta, Tb)] ---> Tc);