# HG changeset patch # User paulson # Date 1011608745 -3600 # Node ID 02e2ff3e4d37baf091e48232b5c1792d0f22a41b # Parent 2f61bca07de77beb5ed0754de816345a194c26fe lexical tidying diff -r 2f61bca07de7 -r 02e2ff3e4d37 src/ZF/AC/AC15_WO6.thy --- a/src/ZF/AC/AC15_WO6.thy Mon Jan 21 10:52:05 2002 +0100 +++ b/src/ZF/AC/AC15_WO6.thy Mon Jan 21 11:25:45 2002 +0100 @@ -43,7 +43,7 @@ apply (drule subset_consI [THEN subset_imp_lepoll, THEN lepoll_Finite]) apply (rule nat_not_Finite [THEN notE] ) apply (subgoal_tac "x ~= 0") -apply (blast intro: lepoll_Sigma [THEN lepoll_Finite] , blast) +apply (blast intro: lepoll_Sigma [THEN lepoll_Finite], blast) done lemma lemma1: "[| Union(C)=A; a \ A |] ==> \B \ C. a \ B & B \ A" @@ -61,8 +61,7 @@ apply (unfold sets_of_size_between_def) apply (rule ballI) apply (erule_tac x="cons(0, B*nat)" in ballE) - apply (blast dest: lemma1 intro!: lemma2) -apply blast + apply (blast dest: lemma1 intro!: lemma2, blast) done lemma lemma4: "[| A \ i; Ord(i) |] ==> {P(a). a \ A} \ i" @@ -180,7 +179,7 @@ apply (rule_tac x = "\j \ (LEAST i. HH (f,A,i) ={A}) . HH (f,A,j) " in exI) apply simp apply (fast intro!: Ord_Least lam_type [THEN domain_of_fun] - elim!: less_Least_subset_x lemma1 lemma2, assumption); + elim!: less_Least_subset_x lemma1 lemma2, assumption) done @@ -199,7 +198,7 @@ theorem AC10_AC13: "[| n \ nat; 1\n; AC10(n) |] ==> AC13(n)" apply (unfold AC10_def AC13_def, safe) apply (erule allE) -apply (erule impE [OF _ cons_times_nat_not_Finite], assumption); +apply (erule impE [OF _ cons_times_nat_not_Finite], assumption) apply (fast elim!: impE [OF _ cons_times_nat_not_Finite] dest!: ex_fun_AC13_AC15) done diff -r 2f61bca07de7 -r 02e2ff3e4d37 src/ZF/AC/AC16_WO4.thy --- a/src/ZF/AC/AC16_WO4.thy Mon Jan 21 10:52:05 2002 +0100 +++ b/src/ZF/AC/AC16_WO4.thy Mon Jan 21 11:25:45 2002 +0100 @@ -144,7 +144,7 @@ apply (erule impE) apply (simp add: add_succ) apply (fast intro!: Diff_sing_eqpoll lepoll_Diff_sing) -apply (subgoal_tac "A - {xa} - (B - {xa}) = A - B", simp); +apply (subgoal_tac "A - {xa} - (B - {xa}) = A - B", simp) apply blast done @@ -171,7 +171,7 @@ apply (erule_tac x = "B - {xa}" in allE) apply (erule impE) apply (force intro: eqpoll_sym intro!: Diff_sing_eqpoll) -apply (subgoal_tac "A - {xa} - (B - {xa}) = A - B", simp); +apply (subgoal_tac "A - {xa} - (B - {xa}) = A - B", simp) apply blast done @@ -361,7 +361,7 @@ (** LEVEL 8 **) apply (rule w_Int_eqpoll_m [THEN eqpoll_m_not_empty, THEN not_emptyE]) apply (blast, assumption+) -apply (drule equalityD1 [THEN subsetD], (assumption)) +apply (drule equalityD1 [THEN subsetD], assumption) apply (frule cons_cons_in, assumption+) apply (blast dest: ex1_two_eq intro: s_subset [THEN subsetD] in_s_imp_u_in)+ done @@ -385,7 +385,7 @@ apply (erule exE) apply (rule well_ord_subsets_eqpoll_n [THEN exE], assumption) apply (simp add: subsets_lepoll_succ) -apply (drule well_ord_radd, (assumption)) +apply (drule well_ord_radd, assumption) apply (erule Int_empty [THEN disj_Un_eqpoll_sum, THEN eqpoll_def [THEN def_imp_iff, THEN iffD1], THEN exE]) apply (fast elim!: bij_is_inj [THEN well_ord_rvimage]) @@ -410,9 +410,8 @@ lemma (in AC16) unique_superset_in_MM: "v \ LL ==> \! w. w \ MM & v \ w" -apply (unfold MM_def LL_def, safe) -apply fast -apply (rule lepoll_imp_eqpoll_subset [THEN exE], (assumption)) +apply (unfold MM_def LL_def, safe, fast) +apply (rule lepoll_imp_eqpoll_subset [THEN exE], assumption) apply (rule_tac x = "x" in all_ex [THEN ballE]) apply (blast intro: eqpoll_sym)+ done diff -r 2f61bca07de7 -r 02e2ff3e4d37 src/ZF/AC/AC16_lemmas.thy --- a/src/ZF/AC/AC16_lemmas.thy Mon Jan 21 10:52:05 2002 +0100 +++ b/src/ZF/AC/AC16_lemmas.thy Mon Jan 21 11:25:45 2002 +0100 @@ -40,8 +40,7 @@ apply (fast intro!: RepFunI) apply (rule subsetI) apply (erule RepFunE) -apply (rule CollectI) -apply fast +apply (rule CollectI, fast) apply (fast intro!: singleton_eqpoll_1) done @@ -49,10 +48,8 @@ apply (unfold eqpoll_def bij_def) apply (rule_tac x = "\x \ X. {x}" in exI) apply (rule IntI) -apply (unfold inj_def surj_def) -apply simp -apply (fast intro!: lam_type RepFunI intro: singleton_eq_iff [THEN iffD1]) -apply simp +apply (unfold inj_def surj_def, simp) +apply (fast intro!: lam_type RepFunI intro: singleton_eq_iff [THEN iffD1], simp) apply (fast intro!: lam_type) done @@ -76,15 +73,15 @@ apply (unfold lepoll_def) apply (rule_tac x = "\y \ {y \ Pow(x) . y\succ (succ (n))}. y, y-{LEAST i. i \ y}>" in exI) -apply (rule_tac d = "%z. cons (fst(z), snd(z))" in lam_injective); - apply (blast intro!: Diff_sing_eqpoll intro: InfCard_Least_in); -apply (simp, blast intro: InfCard_Least_in); +apply (rule_tac d = "%z. cons (fst(z), snd(z))" in lam_injective) + apply (blast intro!: Diff_sing_eqpoll intro: InfCard_Least_in) +apply (simp, blast intro: InfCard_Least_in) done lemma set_of_Ord_succ_Union: "(\y \ z. Ord(y)) ==> z \ succ(Union(z))" apply (rule subsetI) -apply (case_tac "\y \ z. y \ x", blast ); -apply (simp, erule bexE); +apply (case_tac "\y \ z. y \ x", blast ) +apply (simp, erule bexE) apply (rule_tac i=xa and j=x in Ord_linear_le) apply (blast dest: le_imp_subset elim: leE ltE)+ done @@ -94,8 +91,7 @@ lemma succ_Union_not_mem: "(!!y. y \ z ==> Ord(y)) ==> succ(Union(z)) \ z" -apply (rule set_of_Ord_succ_Union [THEN subset_not_mem]); -apply blast +apply (rule set_of_Ord_succ_Union [THEN subset_not_mem], blast) done lemma Union_cons_eq_succ_Union: @@ -115,35 +111,31 @@ apply (intro allI impI) apply (erule natE) apply (fast dest!: eqpoll_1_iff_singleton [THEN iffD1] - intro!: Union_singleton) -apply (clarify ); + intro!: Union_singleton, clarify) apply (elim not_emptyE) apply (erule_tac x = "z-{xb}" in allE) apply (erule impE) apply (fast elim!: Diff_sing_eqpoll Diff_sing_eqpoll [THEN eqpoll_succ_imp_not_empty]) -apply (subgoal_tac "xb \ \(z - {xb}) \ z"); -apply (simp add: Union_eq_Un [symmetric]); +apply (subgoal_tac "xb \ \(z - {xb}) \ z") +apply (simp add: Union_eq_Un [symmetric]) apply (frule bspec, assumption) -apply (drule bspec); -apply (erule Diff_subset [THEN subsetD]); -apply (drule Un_Ord_disj, assumption) -apply (auto ); +apply (drule bspec) +apply (erule Diff_subset [THEN subsetD]) +apply (drule Un_Ord_disj, assumption, auto) done lemma Union_in: "[| \x \ z. Ord(x); z\n; z\0; n \ nat |] ==> Union(z) \ z" -apply (blast intro: Union_in_lemma); -done +by (blast intro: Union_in_lemma) lemma succ_Union_in_x: "[| InfCard(x); z \ Pow(x); z\n; n \ nat |] ==> succ(Union(z)) \ x" -apply (rule Limit_has_succ [THEN ltE]); +apply (rule Limit_has_succ [THEN ltE]) prefer 3 apply assumption apply (erule InfCard_is_Limit) -apply (case_tac "z=0"); -apply (simp, fast intro!: InfCard_is_Limit [THEN Limit_has_0]); -apply (rule ltI [OF PowD [THEN subsetD] InfCard_is_Card [THEN Card_is_Ord]]); -apply assumption; +apply (case_tac "z=0") +apply (simp, fast intro!: InfCard_is_Limit [THEN Limit_has_0]) +apply (rule ltI [OF PowD [THEN subsetD] InfCard_is_Card [THEN Card_is_Ord]], assumption) apply (blast intro: Union_in InfCard_is_Card [THEN Card_is_Ord, THEN Ord_in_Ord])+ done @@ -151,18 +143,18 @@ lemma succ_lepoll_succ_succ: "[| InfCard(x); n \ nat |] ==> {y \ Pow(x). y\succ(n)} \ {y \ Pow(x). y\succ(succ(n))}" -apply (unfold lepoll_def); +apply (unfold lepoll_def) apply (rule_tac x = "\z \ {y\Pow(x). y\succ(n)}. cons(succ(Union(z)), z)" in exI) apply (rule_tac d = "%z. z-{Union (z) }" in lam_injective) apply (blast intro!: succ_Union_in_x succ_Union_not_mem intro: cons_eqpoll_succ Ord_in_Ord dest!: InfCard_is_Card [THEN Card_is_Ord]) -apply (simp only: Union_cons_eq_succ_Union); -apply (rule cons_Diff_eq); +apply (simp only: Union_cons_eq_succ_Union) +apply (rule cons_Diff_eq) apply (fast dest!: InfCard_is_Card [THEN Card_is_Ord] elim: Ord_in_Ord - intro!: succ_Union_not_mem); + intro!: succ_Union_not_mem) done lemma subsets_eqpoll_X: @@ -170,9 +162,9 @@ apply (induct_tac "n") apply (rule subsets_eqpoll_1_eqpoll) apply (rule eqpollI) -apply (rule subsets_lepoll_lemma1 [THEN lepoll_trans], assumption+); -apply (rule eqpoll_trans [THEN eqpoll_imp_lepoll]); - apply (erule eqpoll_refl [THEN prod_eqpoll_cong]); +apply (rule subsets_lepoll_lemma1 [THEN lepoll_trans], assumption+) +apply (rule eqpoll_trans [THEN eqpoll_imp_lepoll]) + apply (erule eqpoll_refl [THEN prod_eqpoll_cong]) apply (erule InfCard_square_eqpoll) apply (fast elim: eqpoll_sym [THEN eqpoll_imp_lepoll, THEN lepoll_trans] intro!: succ_lepoll_succ_succ) @@ -185,8 +177,7 @@ done lemma vimage_image_eq: "[| f \ inj(A,B); y \ A |] ==> converse(f)``(f``y) = y" -apply (fast elim!: inj_is_fun [THEN apply_Pair] dest: inj_equality) -done +by (fast elim!: inj_is_fun [THEN apply_Pair] dest: inj_equality) lemma subsets_eqpoll: "A\B ==> {Y \ Pow(A). Y\n}\{Y \ Pow(B). Y\n}" @@ -222,10 +213,10 @@ lemma WO2_infinite_subsets_eqpoll_X: "[| WO2; n \ nat; ~Finite(X) |] ==> {Y \ Pow(X). Y\succ(n)}\X" apply (drule WO2_imp_ex_Card) -apply (elim allE exE conjE); +apply (elim allE exE conjE) apply (frule eqpoll_imp_lepoll [THEN lepoll_infinite], assumption) apply (drule infinite_Card_is_InfCard, assumption) -apply (blast intro: subsets_eqpoll subsets_eqpoll_X eqpoll_sym eqpoll_trans); +apply (blast intro: subsets_eqpoll subsets_eqpoll_X eqpoll_sym eqpoll_trans) done lemma well_ord_imp_ex_Card: "well_ord(X,R) ==> \a. Card(a) & X\a" @@ -238,7 +229,7 @@ apply (elim allE exE conjE) apply (frule eqpoll_imp_lepoll [THEN lepoll_infinite], assumption) apply (drule infinite_Card_is_InfCard, assumption) -apply (blast intro: subsets_eqpoll subsets_eqpoll_X eqpoll_sym eqpoll_trans); +apply (blast intro: subsets_eqpoll subsets_eqpoll_X eqpoll_sym eqpoll_trans) done end diff -r 2f61bca07de7 -r 02e2ff3e4d37 src/ZF/AC/AC18_AC19.thy --- a/src/ZF/AC/AC18_AC19.thy Mon Jan 21 10:52:05 2002 +0100 +++ b/src/ZF/AC/AC18_AC19.thy Mon Jan 21 11:25:45 2002 +0100 @@ -66,7 +66,7 @@ lemma lemma1_1: "[|c \ a; x = c Un {0}; x \ a |] ==> x - {0} \ a" apply clarify -apply (rule subst_elem , (assumption)) +apply (rule subst_elem, assumption) apply (fast elim: notE subst_elem) done @@ -98,10 +98,9 @@ apply (case_tac "A=0", force) apply (erule_tac x = "{uu (a) . a \ A}" in allE) apply (erule impE) -apply (erule RepRep_conj , (assumption)) +apply (erule RepRep_conj, assumption) apply (rule lemma1) -apply (drule lemma2 , (assumption)) -apply auto +apply (drule lemma2, assumption, auto) done end diff -r 2f61bca07de7 -r 02e2ff3e4d37 src/ZF/AC/AC_Equiv.thy --- a/src/ZF/AC/AC_Equiv.thy Mon Jan 21 10:52:05 2002 +0100 +++ b/src/ZF/AC/AC_Equiv.thy Mon Jan 21 11:25:45 2002 +0100 @@ -139,7 +139,7 @@ apply (unfold rvimage_def) apply (rule equalityI, safe) apply (drule_tac P = "%a. :r" in id_conv [THEN subst], - (assumption)) + assumption) apply (drule_tac P = "%a. :r" in id_conv [THEN subst], (assumption+)) apply (fast intro: id_conv [THEN ssubst]) done @@ -179,7 +179,7 @@ lemma surj_image_eq: "f \ surj(A, B) ==> f``A = B" apply (unfold surj_def) apply (erule CollectE) -apply (rule image_fun [THEN ssubst], (assumption), rule subset_refl) +apply (rule image_fun [THEN ssubst], assumption, rule subset_refl) apply (blast dest: apply_type) done @@ -217,7 +217,7 @@ apply (fast intro: LeastI2 nat_into_Ord [THEN Ord_in_Ord] inj_is_fun [THEN apply_type]) apply (erule domainE) -apply (frule inj_is_fun [THEN apply_type], (assumption)) +apply (frule inj_is_fun [THEN apply_type], assumption) apply (rule LeastI2) apply (auto elim!: nat_into_Ord [THEN Ord_in_Ord]) done diff -r 2f61bca07de7 -r 02e2ff3e4d37 src/ZF/AC/Cardinal_aux.thy --- a/src/ZF/AC/Cardinal_aux.thy Mon Jan 21 10:52:05 2002 +0100 +++ b/src/ZF/AC/Cardinal_aux.thy Mon Jan 21 11:25:45 2002 +0100 @@ -8,7 +8,7 @@ theory Cardinal_aux = AC_Equiv: lemma Diff_lepoll: "[| A \ succ(m); B \ A; B\0 |] ==> A-B \ m" -apply (rule not_emptyE, (assumption)) +apply (rule not_emptyE, assumption) apply (blast intro: lepoll_trans [OF subset_imp_lepoll Diff_sing_lepoll]) done @@ -151,7 +151,7 @@ ~Finite(a); Ord(a); n \ nat |] ==> (\b \ a. F(b)) \ a" apply (rule rev_mp) -apply (rule_tac f="\b \ a. F (b)" in UN_fun_lepoll); +apply (rule_tac f="\b \ a. F (b)" in UN_fun_lepoll) apply auto done @@ -187,7 +187,7 @@ apply (drule Un_least_lt, assumption) apply (drule eqpoll_imp_lepoll [THEN lepoll_trans], rule le_imp_lepoll, assumption)+ -apply (case_tac "Finite(x Un xa)"); +apply (case_tac "Finite(x Un xa)") txt{*finite case*} apply (drule Finite_Un [OF lepoll_Finite lepoll_Finite], assumption+) apply (drule subset_Un_Diff [THEN subset_imp_lepoll, THEN lepoll_Finite]) diff -r 2f61bca07de7 -r 02e2ff3e4d37 src/ZF/AC/DC.thy --- a/src/ZF/AC/DC.thy Mon Jan 21 10:52:05 2002 +0100 +++ b/src/ZF/AC/DC.thy Mon Jan 21 11:25:45 2002 +0100 @@ -363,8 +363,7 @@ apply (unfold XX_def) apply (drule apply_type, assumption) apply (elim UN_E CollectE) -apply (drule domain_of_fun [symmetric, THEN trans], assumption) -apply simp +apply (drule domain_of_fun [symmetric, THEN trans], assumption, simp) done lemma (in imp_DC0) restrict_cons_eq_restrict: @@ -404,7 +403,7 @@ (*induction step*) (** LEVEL 5 **) (*prevent simplification of ~\ to \~ *) apply (simp only: separation split) -apply (drule_tac x="succ(xa)" in ospec, blast intro: ltI); +apply (drule_tac x="succ(xa)" in ospec, blast intro: ltI) apply (elim conjE disjE) apply (force elim!: trans subst_context intro!: UN_image_succ_eq_succ) @@ -455,8 +454,7 @@ apply (frule lemma2 [THEN conjunct1, THEN domain_of_fun], assumption+) apply (unfold allRR_def) apply (drule ospec) -apply (drule ltI [OF nat_succI Ord_nat], assumption) -apply simp +apply (drule ltI [OF nat_succI Ord_nat], assumption, simp) apply (elim conjE ballE) apply (erule restrict_eq_imp_val_eq [symmetric], force) apply (simp add: image_fun OrdmemD) @@ -500,7 +498,7 @@ theorem DC_WO3: "(\K. Card(K) --> DC(K)) ==> WO3" apply (unfold DC_def WO3_def) apply (rule allI) -apply (case_tac "A \ Hartog (A)"); +apply (case_tac "A \ Hartog (A)") apply (fast dest!: lesspoll_imp_ex_lt_eqpoll intro!: Ord_Hartog leI [THEN le_imp_subset]) apply (erule allE impE)+ diff -r 2f61bca07de7 -r 02e2ff3e4d37 src/ZF/AC/HH.thy --- a/src/ZF/AC/HH.thy Mon Jan 21 10:52:05 2002 +0100 +++ b/src/ZF/AC/HH.thy Mon Jan 21 11:25:45 2002 +0100 @@ -239,8 +239,7 @@ apply (rule bij_Least_HH_x [THEN bij_converse_bij]) apply (rule f_subsets_imp_UN_HH_eq_x) apply (intro ballI apply_type) -apply (fast intro: lam_type apply_type del: DiffE) -apply assumption; +apply (fast intro: lam_type apply_type del: DiffE, assumption) apply (fast intro: Pi_weaken_type) done diff -r 2f61bca07de7 -r 02e2ff3e4d37 src/ZF/AC/Hartog.thy --- a/src/ZF/AC/Hartog.thy Mon Jan 21 10:52:05 2002 +0100 +++ b/src/ZF/AC/Hartog.thy Mon Jan 21 11:25:45 2002 +0100 @@ -25,7 +25,7 @@ apply (erule inj_is_fun [THEN fun_is_rel, THEN image_subset]) apply (rule well_ord_rvimage [OF bij_is_inj well_ord_Memrel]) apply (erule restrict_bij [THEN bij_converse_bij]) -apply (rule subset_refl, assumption); +apply (rule subset_refl, assumption) apply (rule trans) apply (rule bij_ordertype_vimage) apply (erule restrict_bij [THEN bij_converse_bij]) @@ -36,8 +36,7 @@ lemma Ord_lepoll_imp_eq_ordertype: "[| Ord(a); a \ X |] ==> \Y. Y \ X & (\R. R \ X*X & ordertype(Y,R)=a)" -apply (drule Ord_lepoll_imp_ex_well_ord, (assumption)) -apply clarify +apply (drule Ord_lepoll_imp_ex_well_ord, assumption, clarify) apply (intro exI conjI) apply (erule_tac [3] ordertype_Int, auto) done diff -r 2f61bca07de7 -r 02e2ff3e4d37 src/ZF/AC/WO1_WO7.thy --- a/src/ZF/AC/WO1_WO7.thy Mon Jan 21 10:52:05 2002 +0100 +++ b/src/ZF/AC/WO1_WO7.thy Mon Jan 21 11:25:45 2002 +0100 @@ -50,7 +50,7 @@ lemma converse_Memrel_not_wf_on: "[| Ord(a); ~Finite(a) |] ==> ~wf[a](converse(Memrel(a)))" apply (unfold wf_on_def wf_def) -apply (drule nat_le_infinite_Ord [THEN le_imp_subset], (assumption)) +apply (drule nat_le_infinite_Ord [THEN le_imp_subset], assumption) apply (rule notI) apply (erule_tac x = "nat" in allE, blast) done diff -r 2f61bca07de7 -r 02e2ff3e4d37 src/ZF/AC/WO2_AC16.thy --- a/src/ZF/AC/WO2_AC16.thy Mon Jan 21 10:52:05 2002 +0100 +++ b/src/ZF/AC/WO2_AC16.thy Mon Jan 21 11:25:45 2002 +0100 @@ -31,8 +31,7 @@ (* ********************************************************************** *) lemma recfunAC16_0: "recfunAC16(f,h,0,a) = 0" -apply (simp add: recfunAC16_def); -done +by (simp add: recfunAC16_def) lemma recfunAC16_succ: "recfunAC16(f,h,succ(i),a) = @@ -41,7 +40,7 @@ {f ` (LEAST j. h ` i \ f ` j & (\b f`j --> (\t \ recfunAC16(f,h,i,a). ~ h`b \ t))))})" -apply (simp add: recfunAC16_def); +apply (simp add: recfunAC16_def) done lemma recfunAC16_Limit: "Limit(i) @@ -55,12 +54,11 @@ lemma transrec2_mono_lemma [rule_format]: "[| !!g r. r \ B(g,r); Ord(i) |] ==> j transrec2(j, 0, B) \ transrec2(i, 0, B)" -apply (erule trans_induct); -apply (rule Ord_cases , assumption+); -apply fast +apply (erule trans_induct) +apply (rule Ord_cases, assumption+, fast) apply (simp (no_asm_simp)) -apply (blast elim!: leE); -apply (simp add: transrec2_Limit); +apply (blast elim!: leE) +apply (simp add: transrec2_Limit) apply (blast intro: OUN_I ltI Ord_in_Ord [THEN le_refl] elim!: Limit_has_succ [THEN ltE]) done @@ -68,9 +66,9 @@ lemma transrec2_mono: "[| !!g r. r \ B(g,r); j\i |] ==> transrec2(j, 0, B) \ transrec2(i, 0, B)" -apply (erule leE); +apply (erule leE) apply (rule transrec2_mono_lemma) -apply (auto intro: lt_Ord2 ); +apply (auto intro: lt_Ord2 ) done (* ********************************************************************** *) @@ -80,8 +78,7 @@ lemma recfunAC16_mono: "i\j ==> recfunAC16(f, g, i, a) \ recfunAC16(f, g, j, a)" apply (unfold recfunAC16_def) -apply (rule transrec2_mono) -apply (auto ); +apply (rule transrec2_mono, auto) done (* ********************************************************************** *) @@ -95,8 +92,7 @@ V \ F(i); f(z)<=V; W \ F(j); f(z)<=W |] ==> V = W" apply (erule asm_rl allE impE)+ -apply (drule subsetD, assumption) -apply blast +apply (drule subsetD, assumption, blast) done @@ -118,8 +114,7 @@ ==> \yzY \ F(y). h(z) \ Y) --> (\! Y. Y \ F(y) & h(z) \ Y)" apply (intro oallI impI) -apply (drule ospec, assumption) -apply clarify +apply (drule ospec, assumption, clarify) apply (blast elim!: oallE ) done @@ -134,8 +129,7 @@ apply (rule conjI) apply (rule subsetI) apply (erule OUN_E) -apply (drule ospec, assumption) -apply fast +apply (drule ospec, assumption, fast) apply (drule lemma4, assumption) apply (rule oallI) apply (rule impI) @@ -314,7 +308,7 @@ apply (simp add: Union_recfunAC16_lesspoll) apply (rule Finite_lesspoll_infinite_Ord) apply (rule Finite_def [THEN def_imp_iff, THEN iffD2]) -apply (blast dest: ltD bij_is_fun [THEN apply_type], assumption); +apply (blast dest: ltD bij_is_fun [THEN apply_type], assumption) apply (blast intro: Card_is_Ord) done; @@ -528,7 +522,7 @@ apply (erule imageE) apply (drule ltI, erule Limit_is_Ord) apply (drule Limit_has_succ, assumption) -apply (frule_tac x1="succ(xa)" in spec [THEN mp], assumption); +apply (frule_tac x1="succ(xa)" in spec [THEN mp], assumption) apply (erule conjE) apply (drule ospec) (** LEVEL 10 **) @@ -559,8 +553,7 @@ apply (rule allI) apply (rule impI) apply (frule WO2_infinite_subsets_eqpoll_X, assumption+) -apply (frule_tac n="k #+ m" in WO2_infinite_subsets_eqpoll_X, simp) -apply simp +apply (frule_tac n="k #+ m" in WO2_infinite_subsets_eqpoll_X, simp, simp) apply (frule WO2_imp_ex_Card) apply (elim exE conjE) apply (drule eqpoll_trans [THEN eqpoll_sym, diff -r 2f61bca07de7 -r 02e2ff3e4d37 src/ZF/AC/WO6_WO1.thy --- a/src/ZF/AC/WO6_WO1.thy Mon Jan 21 10:52:05 2002 +0100 +++ b/src/ZF/AC/WO6_WO1.thy Mon Jan 21 11:25:45 2002 +0100 @@ -446,9 +446,7 @@ (* ********************************************************************** *) lemma WO6_imp_NN_not_empty: "WO6 ==> NN(y) \ 0" -apply (unfold WO6_def NN_def, clarify) -apply blast -done +by (unfold WO6_def NN_def, clarify, blast) (* ********************************************************************** *) (* 1 \ NN(y) ==> y can be well-ordered *) diff -r 2f61bca07de7 -r 02e2ff3e4d37 src/ZF/CardinalArith.thy --- a/src/ZF/CardinalArith.thy Mon Jan 21 10:52:05 2002 +0100 +++ b/src/ZF/CardinalArith.thy Mon Jan 21 11:25:45 2002 +0100 @@ -45,8 +45,7 @@ lemma oadd_eq_0_iff: "\Ord(i); Ord(j)\ \ (i ++ j) = 0 <-> i=0 & j=0" apply (erule trans_induct3 [of j]) apply (simp_all add: oadd_Limit) -apply (simp add: Union_empty_iff Limit_def lt_def) -apply blast +apply (simp add: Union_empty_iff Limit_def lt_def, blast) done lemma oadd_eq_lt_iff: "\Ord(i); Ord(j)\ \ 0 < (i ++ j) <-> 0 K |] ==> b \ K" @@ -133,12 +131,12 @@ apply (rule allI) apply (rule impI) apply (erule conjE) -apply (rule eqpoll_succ_imp_not_empty [THEN not_emptyE], (assumption)) -apply (frule Diff_sing_eqpoll, (assumption)) +apply (rule eqpoll_succ_imp_not_empty [THEN not_emptyE], assumption) +apply (frule Diff_sing_eqpoll, assumption) apply (erule allE) apply (erule impE, fast) -apply (drule subsetD, (assumption)) -apply (drule Fin.consI, (assumption)) +apply (drule subsetD, assumption) +apply (drule Fin.consI, assumption) apply (simp add: cons_Diff) done diff -r 2f61bca07de7 -r 02e2ff3e4d37 src/ZF/Main.thy --- a/src/ZF/Main.thy Mon Jan 21 10:52:05 2002 +0100 +++ b/src/ZF/Main.thy Mon Jan 21 11:25:45 2002 +0100 @@ -60,9 +60,9 @@ (* belongs to theory CardinalArith *) lemma InfCard_square_eqpoll: "InfCard(K) \ K \ K \ K" -apply (rule well_ord_InfCard_square_eq); - apply (erule InfCard_is_Card [THEN Card_is_Ord, THEN well_ord_Memrel]); -apply (simp add: InfCard_is_Card [THEN Card_cardinal_eq]); +apply (rule well_ord_InfCard_square_eq) + apply (erule InfCard_is_Card [THEN Card_is_Ord, THEN well_ord_Memrel]) +apply (simp add: InfCard_is_Card [THEN Card_cardinal_eq]) done lemma Inf_Card_is_InfCard: "[| ~Finite(i); Card(i) |] ==> InfCard(i)" diff -r 2f61bca07de7 -r 02e2ff3e4d37 src/ZF/OrdQuant.thy --- a/src/ZF/OrdQuant.thy Mon Jan 21 10:52:05 2002 +0100 +++ b/src/ZF/OrdQuant.thy Mon Jan 21 11:25:45 2002 +0100 @@ -45,8 +45,7 @@ lemma Union_upper_le: "\j: J; i\j; Ord(\(J))\ \ i \ \J" apply (subst Union_eq_UN) -apply (rule UN_upper_le) -apply auto +apply (rule UN_upper_le, auto) done lemma zero_not_Limit [iff]: "~ Limit(0)" @@ -61,8 +60,7 @@ done lemma increasing_LimitI: "\0x\l. \y\l. x \ Limit(l)" -apply (simp add: Limit_def lt_Ord2) -apply clarify +apply (simp add: Limit_def lt_Ord2, clarify) apply (drule_tac i=y in ltD) apply (blast intro: lt_trans1 succ_leI ltI lt_Ord2) done @@ -115,8 +113,7 @@ lemma OUN_upper_le: "\ab(a); Ord(\x \ i \ (\x