# HG changeset patch # User huffman # Date 1179176994 -7200 # Node ID 03085c441c14e789656dadddba7298405a776c4b # Parent 08b0fa905ea0896fcbfbf4096278abf589b44bef spelling: rename arcos -> arccos diff -r 08b0fa905ea0 -r 03085c441c14 src/HOL/Hyperreal/Transcendental.thy --- a/src/HOL/Hyperreal/Transcendental.thy Mon May 14 22:32:51 2007 +0200 +++ b/src/HOL/Hyperreal/Transcendental.thy Mon May 14 23:09:54 2007 +0200 @@ -46,8 +46,8 @@ "arcsin y = (SOME x. -(pi/2) \ x & x \ pi/2 & sin x = y)" definition - arcos :: "real => real" where - "arcos y = (SOME x. 0 \ x & x \ pi & cos x = y)" + arccos :: "real => real" where + "arccos y = (SOME x. 0 \ x & x \ pi & cos x = y)" definition arctan :: "real => real" where @@ -1727,44 +1727,44 @@ apply (rule sin_total, auto) done -lemma arcos: +lemma arccos: "[| -1 \ y; y \ 1 |] - ==> 0 \ arcos y & arcos y \ pi & cos(arcos y) = y" -apply (simp add: arcos_def) + ==> 0 \ arccos y & arccos y \ pi & cos(arccos y) = y" +apply (simp add: arccos_def) apply (drule cos_total, assumption) apply (fast intro: someI2) done -lemma cos_arcos [simp]: "[| -1 \ y; y \ 1 |] ==> cos(arcos y) = y" -by (blast dest: arcos) +lemma cos_arccos [simp]: "[| -1 \ y; y \ 1 |] ==> cos(arccos y) = y" +by (blast dest: arccos) -lemma arcos_bounded: "[| -1 \ y; y \ 1 |] ==> 0 \ arcos y & arcos y \ pi" -by (blast dest: arcos) +lemma arccos_bounded: "[| -1 \ y; y \ 1 |] ==> 0 \ arccos y & arccos y \ pi" +by (blast dest: arccos) -lemma arcos_lbound: "[| -1 \ y; y \ 1 |] ==> 0 \ arcos y" -by (blast dest: arcos) +lemma arccos_lbound: "[| -1 \ y; y \ 1 |] ==> 0 \ arccos y" +by (blast dest: arccos) -lemma arcos_ubound: "[| -1 \ y; y \ 1 |] ==> arcos y \ pi" -by (blast dest: arcos) +lemma arccos_ubound: "[| -1 \ y; y \ 1 |] ==> arccos y \ pi" +by (blast dest: arccos) -lemma arcos_lt_bounded: +lemma arccos_lt_bounded: "[| -1 < y; y < 1 |] - ==> 0 < arcos y & arcos y < pi" + ==> 0 < arccos y & arccos y < pi" apply (frule order_less_imp_le) apply (frule_tac y = y in order_less_imp_le) -apply (frule arcos_bounded, auto) -apply (drule_tac y = "arcos y" in order_le_imp_less_or_eq) +apply (frule arccos_bounded, auto) +apply (drule_tac y = "arccos y" in order_le_imp_less_or_eq) apply (drule_tac [2] y = pi in order_le_imp_less_or_eq, auto) apply (drule_tac [!] f = cos in arg_cong, auto) done -lemma arcos_cos: "[|0 \ x; x \ pi |] ==> arcos(cos x) = x" -apply (simp add: arcos_def) +lemma arccos_cos: "[|0 \ x; x \ pi |] ==> arccos(cos x) = x" +apply (simp add: arccos_def) apply (auto intro!: some1_equality cos_total) done -lemma arcos_cos2: "[|x \ 0; -pi \ x |] ==> arcos(cos x) = -x" -apply (simp add: arcos_def) +lemma arccos_cos2: "[|x \ 0; -pi \ x |] ==> arccos(cos x) = -x" +apply (simp add: arccos_def) apply (auto intro!: some1_equality cos_total) done @@ -1990,11 +1990,11 @@ apply (simp add: real_add_commute) done -declare cos_arcos [OF cos_x_y_ge_minus_one cos_x_y_le_one, simp] -declare arcos_bounded [OF cos_x_y_ge_minus_one cos_x_y_le_one, simp] +declare cos_arccos [OF cos_x_y_ge_minus_one cos_x_y_le_one, simp] +declare arccos_bounded [OF cos_x_y_ge_minus_one cos_x_y_le_one, simp] -declare cos_arcos [OF cos_x_y_ge_minus_one1a cos_x_y_le_one2, simp] -declare arcos_bounded [OF cos_x_y_ge_minus_one1a cos_x_y_le_one2, simp] +declare cos_arccos [OF cos_x_y_ge_minus_one1a cos_x_y_le_one2, simp] +declare arccos_bounded [OF cos_x_y_ge_minus_one1a cos_x_y_le_one2, simp] lemma cos_abs_x_y_ge_minus_one [simp]: "-1 \ \x\ / sqrt (x * x + y * y)" @@ -2007,8 +2007,8 @@ simp del: real_sqrt_gt_0_iff real_sqrt_eq_0_iff) done -declare cos_arcos [OF cos_abs_x_y_ge_minus_one cos_abs_x_y_le_one, simp] -declare arcos_bounded [OF cos_abs_x_y_ge_minus_one cos_abs_x_y_le_one, simp] +declare cos_arccos [OF cos_abs_x_y_ge_minus_one cos_abs_x_y_le_one, simp] +declare arccos_bounded [OF cos_abs_x_y_ge_minus_one cos_abs_x_y_le_one, simp] lemma minus_pi_less_zero: "-pi < 0" by simp @@ -2016,12 +2016,12 @@ declare minus_pi_less_zero [simp] declare minus_pi_less_zero [THEN order_less_imp_le, simp] -lemma arcos_ge_minus_pi: "[| -1 \ y; y \ 1 |] ==> -pi \ arcos y" +lemma arccos_ge_minus_pi: "[| -1 \ y; y \ 1 |] ==> -pi \ arccos y" apply (rule real_le_trans) -apply (rule_tac [2] arcos_lbound, auto) +apply (rule_tac [2] arccos_lbound, auto) done -declare arcos_ge_minus_pi [OF cos_x_y_ge_minus_one cos_x_y_le_one, simp] +declare arccos_ge_minus_pi [OF cos_x_y_ge_minus_one cos_x_y_le_one, simp] (* How tedious! *) lemma lemma_divide_rearrange: @@ -2095,11 +2095,11 @@ lemma polar_ex1: "[| x \ 0; 0 < y |] ==> \r a. x = r * cos a & y = r * sin a" apply (rule_tac x = "sqrt (x\ + y\)" in exI) -apply (rule_tac x = "arcos (x / sqrt (x * x + y * y))" in exI) +apply (rule_tac x = "arccos (x / sqrt (x * x + y * y))" in exI) apply auto apply (drule_tac y2 = y in real_sqrt_sum_squares_gt_zero3 [THEN real_not_refl2, THEN not_sym]) apply (auto simp add: power2_eq_square) -apply (simp add: arcos_def) +apply (simp add: arccos_def) apply (cut_tac x1 = x and y1 = y in cos_total [OF cos_x_y_ge_minus_one cos_x_y_le_one]) apply (rule someI2_ex, blast)