# HG changeset patch # User paulson # Date 1396453531 -3600 # Node ID 0362c3bb4d02243c7d5ec70c07087f15eb3e4908 # Parent 713f9b9a7e51fa46a5de698ddd2611dbde7fa083 new theorem about zero limits diff -r 713f9b9a7e51 -r 0362c3bb4d02 src/HOL/Limits.thy --- a/src/HOL/Limits.thy Wed Apr 02 16:34:37 2014 +0100 +++ b/src/HOL/Limits.thy Wed Apr 02 16:45:31 2014 +0100 @@ -404,6 +404,10 @@ lemma tendsto_Zfun_iff: "(f ---> a) F = Zfun (\x. f x - a) F" by (simp only: tendsto_iff Zfun_def dist_norm) +lemma tendsto_0_le: "\(f ---> 0) F; eventually (\x. norm (g x) \ norm (f x) * K) F\ + \ (g ---> 0) F" + by (simp add: Zfun_imp_Zfun tendsto_Zfun_iff) + subsubsection {* Distance and norms *} lemma tendsto_dist [tendsto_intros]: