# HG changeset patch # User haftmann # Date 1324738389 -3600 # Node ID 03ce2b2a29a20a26473dcaef72b8ab3babd5a795 # Parent 2af982715e5c0f1fecb98daa0f5cdf907deff229 tuned proofs diff -r 2af982715e5c -r 03ce2b2a29a2 src/HOL/Library/Reflection.thy --- a/src/HOL/Library/Reflection.thy Sat Dec 24 15:53:09 2011 +0100 +++ b/src/HOL/Library/Reflection.thy Sat Dec 24 15:53:09 2011 +0100 @@ -12,7 +12,7 @@ setup {* Reify_Data.setup *} lemma ext2: "(\x. f x = g x) \ f = g" - by (blast intro: ext) + by blast use "reflection.ML" diff -r 2af982715e5c -r 03ce2b2a29a2 src/HOL/Nominal/Examples/Standardization.thy --- a/src/HOL/Nominal/Examples/Standardization.thy Sat Dec 24 15:53:09 2011 +0100 +++ b/src/HOL/Nominal/Examples/Standardization.thy Sat Dec 24 15:53:09 2011 +0100 @@ -6,7 +6,7 @@ header {* Standardization *} theory Standardization -imports Nominal +imports "../Nominal" begin text {* @@ -426,11 +426,7 @@ lemma listrelp_eqvt [eqvt]: assumes xy: "listrelp f (x::'a::pt_name list) y" shows "listrelp ((pi::name prm) \ f) (pi \ x) (pi \ y)" using xy - apply induct - apply (simp add: listrelp.intros) - apply simp - apply (metis listrelp.Cons in_eqvt mem_def perm_app pt_set_bij3) - done + by induct (simp_all add: listrelp.intros perm_app [symmetric]) inductive sred :: "lam \ lam \ bool" (infixl "\\<^sub>s" 50) diff -r 2af982715e5c -r 03ce2b2a29a2 src/HOL/RComplete.thy --- a/src/HOL/RComplete.thy Sat Dec 24 15:53:09 2011 +0100 +++ b/src/HOL/RComplete.thy Sat Dec 24 15:53:09 2011 +0100 @@ -76,8 +76,7 @@ from assms have "\X. X \ S" and "\Y. \x\S. x \ Y" unfolding isUb_def setle_def by simp_all from complete_real [OF this] show ?thesis - unfolding isLub_def leastP_def setle_def setge_def Ball_def - Collect_def mem_def isUb_def UNIV_def by simp + by (simp add: isLub_def leastP_def isUb_def setle_def setge_def) qed diff -r 2af982715e5c -r 03ce2b2a29a2 src/HOL/SupInf.thy --- a/src/HOL/SupInf.thy Sat Dec 24 15:53:09 2011 +0100 +++ b/src/HOL/SupInf.thy Sat Dec 24 15:53:09 2011 +0100 @@ -356,7 +356,7 @@ lemma Inf_greater: fixes z :: real shows "X \ {} \ Inf X < z \ \x \ X. x < z" - by (metis Inf_real_iff mem_def not_leE) + by (metis Inf_real_iff not_leE) lemma Inf_close: fixes e :: real diff -r 2af982715e5c -r 03ce2b2a29a2 src/HOL/ex/Set_Theory.thy --- a/src/HOL/ex/Set_Theory.thy Sat Dec 24 15:53:09 2011 +0100 +++ b/src/HOL/ex/Set_Theory.thy Sat Dec 24 15:53:09 2011 +0100 @@ -179,7 +179,7 @@ lemma "a < b \ b < (c::int) \ \A. a \ A \ b \ A \ c \ A" -- {* Example 4. *} - by force + by auto --{*slow*} lemma "P (f b) \ \s A. (\x \ A. P x) \ f s \ A" -- {*Example 5, page 298. *} @@ -194,9 +194,9 @@ by force lemma "(\u v. u < (0::int) \ u \ abs v) - \ (\A::int set. (\y. abs y \ A) \ -2 \ A)" - -- {* Example 8 now needs a small hint. *} - by (simp add: abs_if, force) + \ (\A::int set. -2 \ A & (\y. abs y \ A))" + -- {* Example 8 needs a small hint. *} + by force -- {* not @{text blast}, which can't simplify @{text "-2 < 0"} *} text {* Example 9 omitted (requires the reals). *}