# HG changeset patch # User wenzelm # Date 1205775420 -3600 # Node ID 03def556e26e81686f29a32c989c560e4629462c # Parent 2f387f5c0f52a531c97fa788325557c3d57375e5 removed duplicate lemmas; diff -r 2f387f5c0f52 -r 03def556e26e src/HOL/Auth/KerberosV.thy --- a/src/HOL/Auth/KerberosV.thy Mon Mar 17 18:36:04 2008 +0100 +++ b/src/HOL/Auth/KerberosV.thy Mon Mar 17 18:37:00 2008 +0100 @@ -897,24 +897,6 @@ apply (blast dest: unique_servKeys Says_Tgs_message_form) done -lemma AKcryptSK_not_AKcryptSK: - "\ AKcryptSK authK servK evs; evs \ kerbV \ - \ \ AKcryptSK servK K evs" -apply (erule rev_mp) -apply (erule kerbV.induct) -apply (frule_tac [7] Says_ticket_parts) -apply (frule_tac [5] Says_ticket_parts, simp_all, safe) -txt{*K4 splits into subcases*} -apply simp_all -prefer 4 apply (blast dest!: authK_not_AKcryptSK) -txt{*servK is fresh and so could not have been used, by - @{text new_keys_not_used}*} - prefer 2 - apply (force dest!: Crypt_imp_invKey_keysFor simp add: AKcryptSK_def) -txt{*Others by freshness*} -apply (blast+) -done - text{*The only session keys that can be found with the help of session keys are those sent by Tgs in step K4. *} diff -r 2f387f5c0f52 -r 03def556e26e src/HOL/Divides.thy --- a/src/HOL/Divides.thy Mon Mar 17 18:36:04 2008 +0100 +++ b/src/HOL/Divides.thy Mon Mar 17 18:37:00 2008 +0100 @@ -316,7 +316,7 @@ then show ?thesis using divmod_div_mod by simp qed -text {* The ''recursion´´ equations for @{const div} and @{const mod} *} +text {* The ''recursion'' equations for @{const div} and @{const mod} *} lemma div_less [simp]: fixes m n :: nat @@ -704,61 +704,6 @@ by (cases "n = 0") auto -(* Antimonotonicity of div in second argument *) -lemma div_le_mono2: "!!m::nat. [| 0n |] ==> (k div n) \ (k div m)" -apply (subgoal_tac "0 (k-m) div n") - prefer 2 - apply (blast intro: div_le_mono diff_le_mono2) -apply (rule le_trans, simp) -apply (simp) -done - -lemma div_le_dividend [simp]: "m div n \ (m::nat)" -apply (case_tac "n=0", simp) -apply (subgoal_tac "m div n \ m div 1", simp) -apply (rule div_le_mono2) -apply (simp_all (no_asm_simp)) -done - -(* Similar for "less than" *) -lemma div_less_dividend [rule_format]: - "!!n::nat. 1 0 < m --> m div n < m" -apply (induct_tac m rule: nat_less_induct) -apply (rename_tac "m") -apply (case_tac "m Suc(na) *) -apply (simp add: linorder_not_less le_Suc_eq mod_geq) -apply (auto simp add: Suc_diff_le le_mod_geq) -done - - subsubsection{*The Divides Relation*} lemma dvdI [intro?]: "n = m * k ==> m dvd n" diff -r 2f387f5c0f52 -r 03def556e26e src/HOL/Hoare/hoare_tac.ML --- a/src/HOL/Hoare/hoare_tac.ML Mon Mar 17 18:36:04 2008 +0100 +++ b/src/HOL/Hoare/hoare_tac.ML Mon Mar 17 18:37:00 2008 +0100 @@ -86,15 +86,10 @@ (** input does not suffer any unexpected transformation **) (*****************************************************************************) -Goal "-(Collect b) = {x. ~(b x)}"; -by (Fast_tac 1); -qed "Compl_Collect"; - - (**Simp_tacs**) val before_set2pred_simp_tac = - (simp_tac (HOL_basic_ss addsimps [Collect_conj_eq RS sym,Compl_Collect])); + (simp_tac (HOL_basic_ss addsimps [Collect_conj_eq RS sym, @{thm Compl_Collect}])); val split_simp_tac = (simp_tac (HOL_basic_ss addsimps [split_conv])); diff -r 2f387f5c0f52 -r 03def556e26e src/HOL/Int.thy --- a/src/HOL/Int.thy Mon Mar 17 18:36:04 2008 +0100 +++ b/src/HOL/Int.thy Mon Mar 17 18:37:00 2008 +0100 @@ -1911,10 +1911,6 @@ lemmas zdiff_zmult_distrib = left_diff_distrib [of "z1::int" "z2" "w", standard] lemmas zdiff_zmult_distrib2 = right_diff_distrib [of "w::int" "z1" "z2", standard] -lemmas int_distrib = - zadd_zmult_distrib zadd_zmult_distrib2 - zdiff_zmult_distrib zdiff_zmult_distrib2 - lemmas zmult_1 = mult_1_left [of "z::int", standard] lemmas zmult_1_right = mult_1_right [of "z::int", standard] diff -r 2f387f5c0f52 -r 03def556e26e src/HOL/Library/Heap.thy --- a/src/HOL/Library/Heap.thy Mon Mar 17 18:36:04 2008 +0100 +++ b/src/HOL/Library/Heap.thy Mon Mar 17 18:37:00 2008 +0100 @@ -414,12 +414,12 @@ lemma new_ref_upd: "fst (ref v (upd a i v' h)) = fst (ref v h)" by (simp add: set_array_def get_array_def Let_def ref_new_set upd_def ref_def new_ref_def) -(*not actually true ??? +text {*not actually true ???*} lemma upd_set_ref_swap: "upd a i v (set_ref r v' h) = set_ref r v' (upd a i v h)" apply (case_tac a) apply (simp add: Let_def upd_def) apply auto -done*) +oops lemma length_new_ref[simp]: "length a (snd (ref v h)) = length a h" @@ -429,10 +429,6 @@ "get_array a (snd (ref v h)) = get_array a h" by (simp add: new_ref_def ref_def set_ref_def get_array_def Let_def) -lemma get_array_new_ref [simp]: - "get_array a (snd (ref v h)) ! i = get_array a h ! i" - by (simp add: get_array_def new_ref_def ref_def set_ref_def Let_def) - lemma ref_present_upd [simp]: "ref_present r (upd a i v h) = ref_present r h" by (simp add: upd_def ref_present_def set_array_def get_array_def) diff -r 2f387f5c0f52 -r 03def556e26e src/HOL/List.thy --- a/src/HOL/List.thy Mon Mar 17 18:36:04 2008 +0100 +++ b/src/HOL/List.thy Mon Mar 17 18:37:00 2008 +0100 @@ -1220,10 +1220,6 @@ lemma nth_list_update_neq [simp]: "i \ j ==> xs[i:=x]!j = xs!j" by (induct xs arbitrary: i j) (auto simp add: nth_Cons split: nat.split) -lemma list_update_overwrite [simp]: -"i < size xs ==> xs[i:=x, i:=y] = xs[i:=y]" -by (induct xs arbitrary: i) (auto split: nat.split) - lemma list_update_id[simp]: "xs[i := xs!i] = xs" by (induct xs arbitrary: i) (simp_all split:nat.splits) diff -r 2f387f5c0f52 -r 03def556e26e src/HOL/Matrix/SparseMatrix.thy --- a/src/HOL/Matrix/SparseMatrix.thy Mon Mar 17 18:36:04 2008 +0100 +++ b/src/HOL/Matrix/SparseMatrix.thy Mon Mar 17 18:37:00 2008 +0100 @@ -143,14 +143,6 @@ apply (simp add: sorted_spvec.simps split:list.split_asm) done -lemma sorted_spvec_minus_spvec: - "sorted_spvec v \ sorted_spvec (minus_spvec v)" - apply (induct v) - apply (simp) - apply (frule sorted_spvec_cons1, simp) - apply (simp add: sorted_spvec.simps split:list.split_asm) - done - lemma sorted_spvec_abs_spvec: "sorted_spvec v \ sorted_spvec (abs_spvec v)" apply (induct v) diff -r 2f387f5c0f52 -r 03def556e26e src/HOL/Nat.thy --- a/src/HOL/Nat.thy Mon Mar 17 18:36:04 2008 +0100 +++ b/src/HOL/Nat.thy Mon Mar 17 18:37:00 2008 +0100 @@ -855,9 +855,6 @@ subsubsection {* More results about difference *} -lemma diff_self_eq_0 [simp]: "(m::nat) - m = 0" -by (induct m) simp_all - text {* Addition is the inverse of subtraction: if @{term "n \ m"} then @{term "n + (m - n) = m"}. *} lemma add_diff_inverse: "~ m < n ==> n + (m - n) = (m::nat)" diff -r 2f387f5c0f52 -r 03def556e26e src/HOL/Orderings.thy --- a/src/HOL/Orderings.thy Mon Mar 17 18:36:04 2008 +0100 +++ b/src/HOL/Orderings.thy Mon Mar 17 18:37:00 2008 +0100 @@ -39,9 +39,6 @@ lemma less_imp_le: "x < y \ x \ y" unfolding less_le by blast -lemma less_imp_neq: "x < y \ x \ y" -by (erule contrapos_pn, erule subst, rule less_irrefl) - text {* Useful for simplification, but too risky to include by default. *}