# HG changeset patch # User wenzelm # Date 1151182477 -7200 # Node ID 0505dce27b0b4b240bb64fc85d10ce9a14b4acab # Parent 1be283f3f1baaca4ae2904fc98008b608684e7bf fix/fixes: tuned type constraints; diff -r 1be283f3f1ba -r 0505dce27b0b src/HOL/Library/Ramsey.thy --- a/src/HOL/Library/Ramsey.thy Sat Jun 24 22:25:31 2006 +0200 +++ b/src/HOL/Library/Ramsey.thy Sat Jun 24 22:54:37 2006 +0200 @@ -41,7 +41,7 @@ by (auto intro: someI2_ex) show "\n m. n (choice P r n, choice P r m) \ r" proof (intro strip) - fix n and m::nat + fix n m :: nat assume less: "n r" using PSuc by (auto intro: less_Suc_induct [OF less] transD [OF trans]) @@ -73,7 +73,7 @@ subsection {*Ramsey's Theorem: Infinitary Version*} lemma ramsey_induction: - fixes s::nat and r::nat + fixes s r :: nat shows "!!(YY::'a set) (f::'a set => nat). [|infinite YY; part r s YY f|] @@ -147,7 +147,7 @@ with pg [of n'] have less': "s' ?gy m'" + fix m m' :: nat assume less: "m < m'" show "?gy m \ ?gy m'" using rg [OF less] pg [of m] by (cases "g m", cases "g m'") auto qed show ?thesis @@ -205,7 +205,7 @@ text{*Repackaging of Tom Ridge's final result*} theorem Ramsey: - fixes s::nat and r::nat and Z::"'a set" and f::"'a set => nat" + fixes s r :: nat and Z::"'a set" and f::"'a set => nat" shows "[|infinite Z; \X. X \ Z & finite X & card X = r --> f X < s|]