# HG changeset patch # User nipkow # Date 1235905317 -3600 # Node ID 05629f28f0f78438ef37e072187a7ff82692c9cb # Parent 6d29a873141f4c99c3c119283705a4e1f57ef2ba removed redundant lemmas diff -r 6d29a873141f -r 05629f28f0f7 NEWS --- a/NEWS Sun Mar 01 10:24:57 2009 +0100 +++ b/NEWS Sun Mar 01 12:01:57 2009 +0100 @@ -385,6 +385,7 @@ nat_mod_mod_trivial -> mod_mod_trivial zdiv_zadd_self1 -> div_add_self1 zdiv_zadd_self2 -> div_add_self2 +zdiv_zmult_self1 -> div_mult_self2_is_id zdiv_zmult_self2 -> div_mult_self1_is_id zdvd_triv_left -> dvd_triv_left zdvd_triv_right -> dvd_triv_right diff -r 6d29a873141f -r 05629f28f0f7 src/HOL/IntDiv.thy --- a/src/HOL/IntDiv.thy Sun Mar 01 10:24:57 2009 +0100 +++ b/src/HOL/IntDiv.thy Sun Mar 01 12:01:57 2009 +0100 @@ -689,9 +689,6 @@ apply (blast intro: divmod_rel_div_mod [THEN zmult1_lemma, THEN divmod_rel_mod]) done -lemma zdiv_zmult_self1 [simp]: "b \ (0::int) ==> (a*b) div b = a" -by (simp add: zdiv_zmult1_eq) - lemma zmod_zdiv_trivial: "(a mod b) div b = (0::int)" apply (case_tac "b = 0", simp) apply (auto simp add: linorder_neq_iff div_pos_pos_trivial div_neg_neg_trivial) @@ -717,7 +714,7 @@ assume not0: "b \ 0" show "(a + c * b) div b = c + a div b" unfolding zdiv_zadd1_eq [of a "c * b"] using not0 - by (simp add: zmod_zmult1_eq zmod_zdiv_trivial) + by (simp add: zmod_zmult1_eq zmod_zdiv_trivial zdiv_zmult1_eq) qed auto lemma posDivAlg_div_mod: diff -r 6d29a873141f -r 05629f28f0f7 src/HOL/Library/Float.thy --- a/src/HOL/Library/Float.thy Sun Mar 01 10:24:57 2009 +0100 +++ b/src/HOL/Library/Float.thy Sun Mar 01 12:01:57 2009 +0100 @@ -1093,7 +1093,7 @@ { have "2^(prec - 1) * m \ 2^(prec - 1) * 2^?b" using `m < 2^?b`[THEN less_imp_le] by (rule mult_left_mono, auto) also have "\ = 2 ^ nat (int prec + bitlen m - 1)" unfolding pow_split zpower_zadd_distrib by auto finally have "2^(prec - 1) * m div m \ 2 ^ nat (int prec + bitlen m - 1) div m" using `0 < m` by (rule zdiv_mono1) - hence "2^(prec - 1) \ 2 ^ nat (int prec + bitlen m - 1) div m" unfolding zdiv_zmult_self1[OF `m \ 0`] . + hence "2^(prec - 1) \ 2 ^ nat (int prec + bitlen m - 1) div m" unfolding div_mult_self2_is_id[OF `m \ 0`] . hence "2^(prec - 1) * inverse (2 ^ nat (int prec + bitlen m - 1)) \ ?d" unfolding real_of_int_le_iff[of "2^(prec - 1)", symmetric] by auto } from mult_left_mono[OF this[unfolded pow_split power_add inverse_mult_distrib real_mult_assoc[symmetric] right_inverse[OF pow_not0] real_mult_1], of "2^?e"]