# HG changeset patch # User nipkow # Date 1582802296 -3600 # Node ID 059c55b617343f6c80842ffe920274cfafd5174f # Parent 0e1b9b308d8f3f25c88fd5d3cbe8738f4258334d removed dead lemma diff -r 0e1b9b308d8f -r 059c55b61734 src/HOL/Data_Structures/AVL_Set.thy --- a/src/HOL/Data_Structures/AVL_Set.thy Wed Feb 26 23:49:16 2020 +0100 +++ b/src/HOL/Data_Structures/AVL_Set.thy Thu Feb 27 12:18:16 2020 +0100 @@ -445,20 +445,15 @@ subsection \Height-Size Relation\ -text \Based on theorems by Daniel St\"uwe, Manuel Eberl and Peter Lammich.\ - -lemma height_invers: - "(height t = 0) = (t = Leaf)" - "avl t \ (height t = Suc n) = (\ l a r . t = Node l (a,Suc n) r)" -by (induction t) auto +text \Based on theorems by Daniel St\"uwe, Manuel Eberl and Peter Lammich, much simplified.\ text \Any AVL tree of height \n\ has at least \fib (n+2)\ leaves:\ lemma avl_fib_bound: "avl t \ height t = n \ fib (n+2) \ size1 t" proof (induction n arbitrary: t rule: fib.induct) - case 1 thus ?case by (simp add: height_invers) + case 1 thus ?case by (simp) next - case 2 thus ?case by (cases t) (auto simp: height_invers) + case 2 thus ?case by (cases t) (auto) next case (3 h) from "3.prems" obtain l a r where