# HG changeset patch # User huffman # Date 1315340206 25200 # Node ID 0694fc3248fdec2aabaa18589d3b8f0aff1716aa # Parent 19e1c6e922b60473a5703ccc20595f13b6c45cc2 remove some unnecessary simp rules from simpset diff -r 19e1c6e922b6 -r 0694fc3248fd src/HOL/Complex.thy --- a/src/HOL/Complex.thy Tue Sep 06 21:56:11 2011 +0200 +++ b/src/HOL/Complex.thy Tue Sep 06 13:16:46 2011 -0700 @@ -304,10 +304,10 @@ end -lemma cmod_unit_one [simp]: "cmod (Complex (cos a) (sin a)) = 1" +lemma cmod_unit_one: "cmod (Complex (cos a) (sin a)) = 1" by simp -lemma cmod_complex_polar [simp]: +lemma cmod_complex_polar: "cmod (complex_of_real r * Complex (cos a) (sin a)) = abs r" by (simp add: norm_mult) @@ -315,10 +315,10 @@ unfolding complex_norm_def by (rule real_sqrt_sum_squares_ge1) -lemma complex_mod_minus_le_complex_mod [simp]: "- cmod x \ cmod x" +lemma complex_mod_minus_le_complex_mod: "- cmod x \ cmod x" by (rule order_trans [OF _ norm_ge_zero], simp) -lemma complex_mod_triangle_ineq2 [simp]: "cmod(b + a) - cmod b \ cmod a" +lemma complex_mod_triangle_ineq2: "cmod(b + a) - cmod b \ cmod a" by (rule ord_le_eq_trans [OF norm_triangle_ineq2], simp) lemma abs_Re_le_cmod: "\Re x\ \ cmod x" @@ -635,7 +635,7 @@ qed lemma complex_mod_rcis [simp]: "cmod(rcis r a) = abs r" - by (simp add: rcis_def cis_def sin_cos_squared_add2_mult) + by (simp add: rcis_def cis_def norm_mult) lemma complex_mod_sqrt_Re_mult_cnj: "cmod z = sqrt (Re (z * cnj z))" by (simp add: cmod_def power2_eq_square)