# HG changeset patch # User huffman # Date 1315090809 25200 # Node ID 075327b8e841f68acf2c864c50e42435a97940cd # Parent cad98c8f0e356747881df79e4c58c2f64acfc9e6 remove duplicate lemma nat_zero in favor of nat_0 diff -r cad98c8f0e35 -r 075327b8e841 src/HOL/Int.thy --- a/src/HOL/Int.thy Sat Sep 03 15:37:41 2011 -0700 +++ b/src/HOL/Int.thy Sat Sep 03 16:00:09 2011 -0700 @@ -403,10 +403,6 @@ lemma nat_int [simp]: "nat (of_nat n) = n" by (simp add: nat int_def) -(* FIXME: duplicates nat_0 *) -lemma nat_zero [simp]: "nat 0 = 0" -by (simp add: Zero_int_def nat) - lemma int_nat_eq [simp]: "of_nat (nat z) = (if 0 \ z then z else 0)" by (cases z) (simp add: nat le int_def Zero_int_def) @@ -1623,8 +1619,7 @@ lemmas diff_int_def_symmetric = diff_int_def [symmetric, simp] -(* FIXME: duplicates nat_zero *) -lemma nat_0: "nat 0 = 0" +lemma nat_0 [simp]: "nat 0 = 0" by (simp add: nat_eq_iff) lemma nat_1: "nat 1 = Suc 0"