# HG changeset patch # User oheimb # Date 845389979 -7200 # Node ID 076a8d2f972b8ccc44a0d15f39b435d063b0d0f5 # Parent 76ea62f720f1c82cde240ec9172f1641810b1fe0 bound o_apply theorem to thy diff -r 76ea62f720f1 -r 076a8d2f972b src/HOL/simpdata.ML --- a/src/HOL/simpdata.ML Tue Oct 15 10:58:59 1996 +0200 +++ b/src/HOL/simpdata.ML Tue Oct 15 16:32:59 1996 +0200 @@ -180,7 +180,7 @@ (2, prove_goal HOL.thy "(P=P')--> (P'--> (Q=Q'))--> ((P-->Q) = (P'-->Q'))" (fn _=> [fast_tac HOL_cs 1]) RS mp RS mp); -val o_apply = prove_goalw HOL.thy [o_def] "(f o g)(x) = f(g(x))" +val o_apply = prove_goalw HOL.thy [o_def] "(f o g) x = f (g x)" (fn _ => [rtac refl 1]); (*Miniscoping: pushing in existential quantifiers*) @@ -325,7 +325,9 @@ "f(if c then x else y) = (if c then f x else f y)" (fn _ => [simp_tac (HOL_ss setloop (split_tac [expand_if])) 1]); -qed_goalw "o_assoc" HOL.thy [o_def] "f o (g o h) = (f o g o h)" +bind_thm ("o_apply", o_apply); + +qed_goalw "o_assoc" HOL.thy [o_def] "f o (g o h) = f o g o h" (fn _=>[rtac ext 1, rtac refl 1]);