# HG changeset patch # User nipkow # Date 1535108933 -7200 # Node ID 07714b60f65368c5d5cc2d4110c625e8d5e3e7f4 # Parent 63e84bd8e1f68f1ef32b15ca3cc61f76db6a183e tuned proofs diff -r 63e84bd8e1f6 -r 07714b60f653 src/HOL/Analysis/Bochner_Integration.thy --- a/src/HOL/Analysis/Bochner_Integration.thy Thu Aug 23 16:45:19 2018 +0200 +++ b/src/HOL/Analysis/Bochner_Integration.thy Fri Aug 24 13:08:53 2018 +0200 @@ -2009,55 +2009,17 @@ using \0 \ r\ by (simp add: not_integrable_integral_eq) qed -lemma integrable_Min: - fixes f:: "_ \ _ \ real" - assumes "finite I" "I \ {}" - "\i. i \ I \ integrable M (f i)" - shows "integrable M (\x. Min {f i x|i. i \ I})" -using assms apply (induct rule: finite_ne_induct) apply simp+ -proof - - fix j F assume H: "finite F" "F \ {}" "integrable M (\x. Min {f i x |i. i \ F})" - "(\i. i = j \ i \ F \ integrable M (f i))" - have "{f i x |i. i = j \ i \ F} = insert (f j x) {f i x |i. i \ F}" for x by blast - then have "Min {f i x |i. i = j \ i \ F} = min (f j x) (Min {f i x |i. i \ F})" for x - using H(1) H(2) Min_insert by simp - moreover have "integrable M (\x. min (f j x) (Min {f i x |i. i \ F}))" - by (rule integrable_min, auto simp add: H) - ultimately show "integrable M (\x. Min {f i x |i. i = j \ i \ F})" by simp -qed - lemma integrable_MIN: fixes f:: "_ \ _ \ real" - assumes "finite I" "I \ {}" - "\i. i \ I \ integrable M (f i)" - shows "integrable M (\x. MIN i\I. f i x)" -using integrable_Min[of I M f, OF assms] -by(simp add: Setcompr_eq_image) - -lemma integrable_Max: - fixes f:: "_ \ _ \ real" - assumes "finite I" "I \ {}" - "\i. i \ I \ integrable M (f i)" - shows "integrable M (\x. Max {f i x|i. i \ I})" -using assms apply (induct rule: finite_ne_induct) apply simp+ -proof - - fix j F assume H: "finite F" "F \ {}" "integrable M (\x. Max {f i x |i. i \ F})" - "(\i. i = j \ i \ F \ integrable M (f i))" - have "{f i x |i. i = j \ i \ F} = insert (f j x) {f i x |i. i \ F}" for x by blast - then have "Max {f i x |i. i = j \ i \ F} = max (f j x) (Max {f i x |i. i \ F})" for x - using H(1) H(2) Max_insert by simp - moreover have "integrable M (\x. max (f j x) (Max {f i x |i. i \ F}))" - by (rule integrable_max, auto simp add: H) - ultimately show "integrable M (\x. Max {f i x |i. i = j \ i \ F})" by simp -qed + shows "\ finite I; I \ {}; \i. i \ I \ integrable M (f i) \ + \ integrable M (\x. MIN i\I. f i x)" +by (induct rule: finite_ne_induct) simp+ lemma integrable_MAX: fixes f:: "_ \ _ \ real" - assumes "finite I" "I \ {}" - "\i. i \ I \ integrable M (f i)" - shows "integrable M (\x. MAX i\I. f i x)" -using integrable_Max[of I M f, OF assms] -by(simp add: Setcompr_eq_image) + shows "\ finite I; I \ {}; \i. i \ I \ integrable M (f i) \ + \ integrable M (\x. MAX i\I. f i x)" +by (induct rule: finite_ne_induct) simp+ lemma integral_Markov_inequality: assumes [measurable]: "integrable M u" and "AE x in M. 0 \ u x" "0 < (c::real)"