# HG changeset patch # User huffman # Date 1266423586 28800 # Node ID 07b3112e464b527693c69ecf2ec3132c4e563bf6 # Parent eba22d68a0a7abcaeafcba2ec6028377785acd8d fix warnings about duplicate simp rules diff -r eba22d68a0a7 -r 07b3112e464b src/HOLCF/Cfun.thy --- a/src/HOLCF/Cfun.thy Wed Feb 17 08:05:16 2010 -0800 +++ b/src/HOLCF/Cfun.thy Wed Feb 17 08:19:46 2010 -0800 @@ -521,7 +521,7 @@ text {* results about strictify *} lemma cont_strictify1: "cont (\f. if x = \ then \ else f\x)" -by (simp add: cont_if) +by simp lemma monofun_strictify2: "monofun (\x. if x = \ then \ else f\x)" apply (rule monofunI) diff -r eba22d68a0a7 -r 07b3112e464b src/HOLCF/Deflation.thy --- a/src/HOLCF/Deflation.thy Wed Feb 17 08:05:16 2010 -0800 +++ b/src/HOLCF/Deflation.thy Wed Feb 17 08:19:46 2010 -0800 @@ -316,16 +316,14 @@ subsection {* Uniqueness of ep-pairs *} lemma ep_pair_unique_e_lemma: - assumes "ep_pair e1 p" and "ep_pair e2 p" + assumes 1: "ep_pair e1 p" and 2: "ep_pair e2 p" shows "e1 \ e2" proof (rule below_cfun_ext) - interpret e1: ep_pair e1 p by fact - interpret e2: ep_pair e2 p by fact fix x have "e1\(p\(e2\x)) \ e2\x" - by (rule e1.e_p_below) + by (rule ep_pair.e_p_below [OF 1]) thus "e1\x \ e2\x" - by (simp only: e2.e_inverse) + by (simp only: ep_pair.e_inverse [OF 2]) qed lemma ep_pair_unique_e: @@ -333,18 +331,16 @@ by (fast intro: below_antisym elim: ep_pair_unique_e_lemma) lemma ep_pair_unique_p_lemma: - assumes "ep_pair e p1" and "ep_pair e p2" + assumes 1: "ep_pair e p1" and 2: "ep_pair e p2" shows "p1 \ p2" proof (rule below_cfun_ext) - interpret p1: ep_pair e p1 by fact - interpret p2: ep_pair e p2 by fact fix x have "e\(p1\x) \ x" - by (rule p1.e_p_below) + by (rule ep_pair.e_p_below [OF 1]) hence "p2\(e\(p1\x)) \ p2\x" by (rule monofun_cfun_arg) thus "p1\x \ p2\x" - by (simp only: p2.e_inverse) + by (simp only: ep_pair.e_inverse [OF 2]) qed lemma ep_pair_unique_p: