# HG changeset patch # User nipkow # Date 1585662675 -7200 # Node ID 07bec530f02e36defc2644008c8a9d9ae5a80187 # Parent 2e8f861d21d428562022bec7498b0a54f09279b2 cleaned proofs diff -r 2e8f861d21d4 -r 07bec530f02e src/HOL/Analysis/Abstract_Euclidean_Space.thy --- a/src/HOL/Analysis/Abstract_Euclidean_Space.thy Mon Mar 30 10:35:10 2020 +0200 +++ b/src/HOL/Analysis/Abstract_Euclidean_Space.thy Tue Mar 31 15:51:15 2020 +0200 @@ -158,7 +158,7 @@ by (simp add: contractible_imp_path_connected_space) lemma connected_Euclidean_space: "connected_space (Euclidean_space n)" - by (simp add: contractible_Euclidean_space contractible_imp_connected_space) + by (simp add: contractible_imp_connected_space) lemma locally_path_connected_Euclidean_space: "locally_path_connected_space (Euclidean_space n)" diff -r 2e8f861d21d4 -r 07bec530f02e src/HOL/Analysis/Abstract_Topology.thy --- a/src/HOL/Analysis/Abstract_Topology.thy Mon Mar 30 10:35:10 2020 +0200 +++ b/src/HOL/Analysis/Abstract_Topology.thy Tue Mar 31 15:51:15 2020 +0200 @@ -2383,12 +2383,6 @@ by (simp add: closed_map_id continuous_closed_imp_quotient_map) qed -lemma homeomorphic_maps_i [simp]:"homeomorphic_maps X Y id id \ Y = X" - by (metis (full_types) eq_id_iff homeomorphic_maps_id) - -lemma homeomorphic_map_i [simp]: "homeomorphic_map X Y id \ Y = X" - by (metis (no_types) eq_id_iff homeomorphic_map_id) - lemma homeomorphic_map_compose: assumes "homeomorphic_map X Y f" "homeomorphic_map Y X'' g" shows "homeomorphic_map X X'' (g \ f)" diff -r 2e8f861d21d4 -r 07bec530f02e src/HOL/Analysis/Arcwise_Connected.thy --- a/src/HOL/Analysis/Arcwise_Connected.thy Mon Mar 30 10:35:10 2020 +0200 +++ b/src/HOL/Analysis/Arcwise_Connected.thy Tue Mar 31 15:51:15 2020 +0200 @@ -1789,13 +1789,13 @@ have "False" if "\ \ F n" "u < \" "\ < v" for \ proof - have "\ \ {z..v}" - by (metis DiffI disjoint_iff_not_equal less_irrefl singletonD that v(3)) + by (metis DiffI disjoint_iff_not_equal less_irrefl singletonD that(1,3) v(3)) moreover have "\ \ {w..z} \ F n" by (metis equals0D wzF_null) ultimately have "\ \ {u..w}" using that by auto then show ?thesis - by (metis DiffI disjoint_iff_not_equal less_eq_real_def not_le singletonD that u(3)) + by (metis DiffI disjoint_iff_not_equal less_eq_real_def not_le singletonD that(1,2) u(3)) qed moreover have "\\ \ F n; v < \; \ < u\ \ False" for \ @@ -1811,7 +1811,7 @@ by (metis dist_norm dist_triangle_half_r less_irrefl) qed (auto simp: open_segment_commute) show ?thesis - unfolding \_def by (metis (no_types, hide_lams) INT_I Inf_lower2 rangeI that F01 subsetCE pqF) + unfolding \_def by (metis (no_types, hide_lams) INT_I Inf_lower2 rangeI that(3) F01 subsetCE pqF) qed show "closed {0..1::real}" by auto qed (meson \_def) @@ -1972,7 +1972,7 @@ show "pathstart (subpath u v g) = a" "pathfinish (subpath u v g) = b" by (simp_all add: \a = g u\ \b = g v\) show "path_image (subpath u v g) \ path_image p" - by (metis \arc g\ \u \ {0..1}\ \v \ {0..1}\ arc_imp_path order_trans pag path_image_def path_image_subpath_subset ph) + by (metis \u \ {0..1}\ \v \ {0..1}\ order_trans pag path_image_def path_image_subpath_subset ph) show "arc (subpath u v g)" using \arc g\ \a = g u\ \b = g v\ \u \ {0..1}\ \v \ {0..1}\ arc_subpath_arc \a \ b\ by blast qed @@ -2049,7 +2049,7 @@ and g: "pathstart g = y" "pathfinish g = z" using \y \ z\ by (force simp: path_connected_arcwise) have "compact (g -` frontier S \ {0..1})" - apply (simp add: compact_eq_bounded_closed bounded_Int bounded_closed_interval) + apply (simp add: compact_eq_bounded_closed bounded_Int) apply (rule closed_vimage_Int) using \arc g\ apply (auto simp: arc_def path_def) done diff -r 2e8f861d21d4 -r 07bec530f02e src/HOL/Analysis/Ball_Volume.thy --- a/src/HOL/Analysis/Ball_Volume.thy Mon Mar 30 10:35:10 2020 +0200 +++ b/src/HOL/Analysis/Ball_Volume.thy Tue Mar 31 15:51:15 2020 +0200 @@ -46,7 +46,7 @@ (auto intro!: derivative_eq_intros continuous_intros simp: set_borel_measurable_def) also have "\ = (\\<^sup>+ x. 2 * ennreal ((1 - x\<^sup>2) powr (real n / 2) * indicator {0..1} x) \lborel)" by (intro nn_integral_cong_AE AE_I[of _ _ "{0}"]) - (auto simp: indicator_def powr_minus powr_half_sqrt field_split_simps ennreal_mult' mult_ac) + (auto simp: indicator_def powr_minus powr_half_sqrt field_split_simps ennreal_mult') also have "\ = (\\<^sup>+ x. ennreal ((1 - x\<^sup>2) powr (real n / 2) * indicator {0..1} x) \lborel) + (\\<^sup>+ x. ennreal ((1 - x\<^sup>2) powr (real n / 2) * indicator {0..1} x) \lborel)" (is "_ = ?I + _") by (simp add: mult_2 nn_integral_add) @@ -137,7 +137,7 @@ proof (cases "y \ {-r<..2 < r\<^sup>2" by (subst real_sqrt_less_iff [symmetric]) auto - thus ?thesis by (subst insert.IH) (auto simp: real_sqrt_less_iff) + thus ?thesis by (subst insert.IH) (auto) qed (insert elim, auto) qed qed diff -r 2e8f861d21d4 -r 07bec530f02e src/HOL/Analysis/Bochner_Integration.thy --- a/src/HOL/Analysis/Bochner_Integration.thy Mon Mar 30 10:35:10 2020 +0200 +++ b/src/HOL/Analysis/Bochner_Integration.thy Tue Mar 31 15:51:15 2020 +0200 @@ -403,7 +403,7 @@ from g have "simple_bochner_integral M (\x. f (g x)) = (\y\g ` space M. measure M {x \ space M. g x = y} *\<^sub>R f y)" by (intro simple_bochner_integral_partition) - (auto simp: simple_bochner_integrable_compose2[where p="\x y. f x"] zero + (auto simp: simple_bochner_integrable_compose2[where p="\x y. f x"] elim: simple_bochner_integrable.cases) also have "\ = f (simple_bochner_integral M g)" by (simp add: simple_bochner_integral_def sum scale) @@ -1379,7 +1379,7 @@ lemma integral_minus_iff[simp]: "integrable M (\x. - f x ::'a::{banach, second_countable_topology}) \ integrable M f" unfolding integrable_iff_bounded - by (auto intro: borel_measurable_uminus[of "\x. - f x" M, simplified]) + by (auto) lemma integrable_indicator_iff: "integrable M (indicator A::_ \ real) \ A \ space M \ sets M \ emeasure M (A \ space M) < \" @@ -1634,7 +1634,7 @@ with seq show "\N. \n\N. 0 \ integral\<^sup>L M (U n)" by auto qed - qed (auto simp: integrable_mult_left_iff) + qed (auto) also have "\ = integral\<^sup>L M f" using nonneg by (auto intro!: integral_cong_AE) finally show ?thesis . @@ -1657,7 +1657,7 @@ by (simp add: integrable_indicator_iff ennreal_indicator emeasure_eq_ennreal_measure) next case (mult f c) then show ?case - by (auto simp add: integrable_mult_left_iff nn_integral_cmult ennreal_mult integral_nonneg_AE) + by (auto simp add: nn_integral_cmult ennreal_mult integral_nonneg_AE) next case (add g f) then have "integrable M f" "integrable M g" @@ -2756,7 +2756,7 @@ by (auto split: split_indicator simp: eq_commute[of x] cong: conj_cong) qed also have "\ = (\a\A. f a * measure M {a})" - using finite by (subst integral_sum) (auto simp add: integrable_mult_left_iff) + using finite by (subst integral_sum) (auto) finally show ?thesis . qed diff -r 2e8f861d21d4 -r 07bec530f02e src/HOL/Analysis/Borel_Space.thy --- a/src/HOL/Analysis/Borel_Space.thy Mon Mar 30 10:35:10 2020 +0200 +++ b/src/HOL/Analysis/Borel_Space.thy Tue Mar 31 15:51:15 2020 +0200 @@ -1758,7 +1758,7 @@ also have "\ < ?I i / 2 + ?I i / 2" by (intro add_strict_mono d less_trans[OF _ j] *) also have "\ \ ?I i" - by (simp add: field_simps of_nat_Suc) + by (simp add: field_simps) finally show "dist (f y) (f z) \ ?I i" by simp qed diff -r 2e8f861d21d4 -r 07bec530f02e src/HOL/Analysis/Cartesian_Space.thy --- a/src/HOL/Analysis/Cartesian_Space.thy Mon Mar 30 10:35:10 2020 +0200 +++ b/src/HOL/Analysis/Cartesian_Space.thy Tue Mar 31 15:51:15 2020 +0200 @@ -1436,7 +1436,7 @@ using idplus [OF \m \ n\] by simp qed then show ?thesis - by (metis \linear f\ matrix_vector_mul) + by (metis \linear f\ matrix_vector_mul(2)) qed end \ No newline at end of file diff -r 2e8f861d21d4 -r 07bec530f02e src/HOL/Analysis/Change_Of_Vars.thy --- a/src/HOL/Analysis/Change_Of_Vars.thy Mon Mar 30 10:35:10 2020 +0200 +++ b/src/HOL/Analysis/Change_Of_Vars.thy Tue Mar 31 15:51:15 2020 +0200 @@ -543,7 +543,7 @@ also have "\ = norm (f' x (y - x) - (f y - f x)) / r" using \r > 0\ by (simp add: divide_simps scale_right_diff_distrib [symmetric]) also have "\ \ norm (f y - (f x + f' x (y - x))) / norm (y - x)" - using that \r > 0\ False by (simp add: algebra_simps field_split_simps dist_norm norm_minus_commute mult_right_mono) + using that \r > 0\ False by (simp add: field_split_simps dist_norm norm_minus_commute mult_right_mono) also have "\ < k" using that \0 < \\ by (simp add: dist_commute r_def \ [OF \y \ S\ False]) finally show "dist (f' x ((y - x) /\<^sub>R r)) ((f y - f x) /\<^sub>R r) < k" . @@ -1656,7 +1656,7 @@ show "linear ((*v) (matrix (f' x) - B))" by (rule matrix_vector_mul_linear) have "((\y. ((f x + f' x (y - x)) - f y) /\<^sub>R norm (y - x)) \ 0) (at x within S)" - using tendsto_minus [OF lim_df] by (simp add: algebra_simps field_split_simps) + using tendsto_minus [OF lim_df] by (simp add: field_split_simps) then show "((\y. (matrix (f' x) - B) *v (y - x) /\<^sub>R norm (y - x)) \ 0) (at x within S)" proof (rule Lim_transform) have "((\y. ((f y + B *v x - (f x + B *v y)) /\<^sub>R norm (y - x))) \ 0) (at x within S)" @@ -1724,7 +1724,7 @@ then show "((\y. (matrix (f' x) - B) *v (y - x) /\<^sub>R norm (y - x) - (f x + f' x (y - x) - f y) /\<^sub>R norm (y - x)) \ 0) (at x within S)" - by (simp add: algebra_simps diff lin_df matrix_vector_mul_linear scalar_mult_eq_scaleR) + by (simp add: algebra_simps diff lin_df scalar_mult_eq_scaleR) qed qed (use x in \simp; auto simp: not_less\) ultimately have "f' x = (*v) B" @@ -2168,7 +2168,7 @@ proof (rule order_trans [OF measT]) have "?DVU = (d * 2 * (4 * B) ^ (?n - 1)) * norm (v - u)^?n" using \c > 0\ - apply (simp add: algebra_simps power_mult_distrib) + apply (simp add: algebra_simps) by (metis Suc_pred power_Suc zero_less_card_finite) also have "\ \ (e / (2*c) ^ ?m / (?m ^ ?m)) * norm(v - u) ^ ?n" by (rule mult_right_mono [OF d]) auto @@ -2239,7 +2239,7 @@ using \c > 0\ by (simp add: content_cbox_if_cart) finally have "sum ?\ \ \ (2 ^ ?m * c ^ ?m)" . then show ?thesis - using \e > 0\ \c > 0\ by (auto simp: field_split_simps mult_less_0_iff) + using \e > 0\ \c > 0\ by (auto simp: field_split_simps) qed finally show ?thesis . qed @@ -2384,7 +2384,7 @@ done ultimately show ?thesis using \y > 0\ integral_restrict_Int [of S "{t. h n (g t) = y}" "\t. \det (matrix (g' t))\ * y"] - apply (simp add: integrable_on_indicator integrable_on_cmult_iff integral_indicator) + apply (simp add: integrable_on_indicator integral_indicator) apply (simp add: indicator_def if_distrib cong: if_cong) done qed diff -r 2e8f861d21d4 -r 07bec530f02e src/HOL/Analysis/Complex_Analysis_Basics.thy --- a/src/HOL/Analysis/Complex_Analysis_Basics.thy Mon Mar 30 10:35:10 2020 +0200 +++ b/src/HOL/Analysis/Complex_Analysis_Basics.thy Tue Mar 31 15:51:15 2020 +0200 @@ -489,7 +489,7 @@ lemma analytic_on_sum [analytic_intros]: "(\i. i \ I \ (f i) analytic_on S) \ (\x. sum (\i. f i x) I) analytic_on S" - by (induct I rule: infinite_finite_induct) (auto simp: analytic_on_const analytic_on_add) + by (induct I rule: infinite_finite_induct) (auto simp: analytic_on_add) lemma deriv_left_inverse: assumes "f holomorphic_on S" and "g holomorphic_on T" @@ -579,11 +579,11 @@ lemma deriv_cmult_at: "f analytic_on {z} \ deriv (\w. c * f w) z = c * deriv f z" -by (auto simp: complex_derivative_mult_at deriv_const analytic_on_const) +by (auto simp: complex_derivative_mult_at) lemma deriv_cmult_right_at: "f analytic_on {z} \ deriv (\w. f w * c) z = deriv f z * c" -by (auto simp: complex_derivative_mult_at deriv_const analytic_on_const) +by (auto simp: complex_derivative_mult_at) subsection\<^marker>\tag unimportant\\Complex differentiation of sequences and series\ @@ -758,7 +758,7 @@ apply (rule field_differentiable_bound [where f' = "\w. f (Suc n) w * (z - w)^n / (fact n)" and S = "closed_segment w z", OF convex_closed_segment]) - apply (auto simp: ends_in_segment DERIV_subset [OF sum_deriv wzs] + apply (auto simp: DERIV_subset [OF sum_deriv wzs] norm_divide norm_mult norm_power divide_le_cancel cmod_bound) done also have "... \ B * norm (z - w) ^ Suc n / (fact n)" diff -r 2e8f861d21d4 -r 07bec530f02e src/HOL/Analysis/Complex_Transcendental.thy --- a/src/HOL/Analysis/Complex_Transcendental.thy Mon Mar 30 10:35:10 2020 +0200 +++ b/src/HOL/Analysis/Complex_Transcendental.thy Tue Mar 31 15:51:15 2020 +0200 @@ -612,7 +612,7 @@ apply (simp add: cos_add cmod_power2 cos_of_real sin_of_real Complex_eq) apply (simp add: cos_exp_eq sin_exp_eq exp_minus exp_of_real Re_divide Im_divide power_divide) apply (simp only: left_diff_distrib [symmetric] power_mult_distrib sin_squared_eq) - apply (simp add: power2_eq_square algebra_simps field_split_simps) + apply (simp add: power2_eq_square field_split_simps) done lemma norm_sin_squared: @@ -621,7 +621,7 @@ apply (simp add: sin_add cmod_power2 cos_of_real sin_of_real cos_double_cos exp_double Complex_eq) apply (simp add: cos_exp_eq sin_exp_eq exp_minus exp_of_real Re_divide Im_divide power_divide) apply (simp only: left_diff_distrib [symmetric] power_mult_distrib cos_squared_eq) - apply (simp add: power2_eq_square algebra_simps field_split_simps) + apply (simp add: power2_eq_square field_split_simps) done lemma exp_uminus_Im: "exp (- Im z) \ exp (cmod z)" @@ -1102,7 +1102,7 @@ by auto lemma Arg2pi_cnj_eq_inverse: "z\0 \ Arg2pi (cnj z) = Arg2pi (inverse z)" - apply (simp add: Arg2pi_eq_iff field_split_simps complex_norm_square [symmetric] mult.commute) + apply (simp add: Arg2pi_eq_iff field_split_simps complex_norm_square [symmetric]) by (metis of_real_power zero_less_norm_iff zero_less_power) lemma Arg2pi_cnj: "Arg2pi(cnj z) = (if z \ \ then Arg2pi z else 2*pi - Arg2pi z)" @@ -1946,7 +1946,7 @@ by (metis Arg_eq_0 Arg_inverse inverse_inverse_eq) lemma Arg_cnj_eq_inverse: "z\0 \ Arg (cnj z) = Arg (inverse z)" - apply (simp add: Arg_eq_iff field_split_simps complex_norm_square [symmetric] mult.commute) + apply (simp add: Arg_eq_iff field_split_simps complex_norm_square [symmetric]) by (metis of_real_power zero_less_norm_iff zero_less_power) lemma Arg_cnj: "Arg(cnj z) = (if z \ \ then Arg z else - Arg z)" @@ -2936,7 +2936,7 @@ unfolding Arctan_def scaleR_conv_of_real apply (intro derivative_eq_intros | simp add: nz0 *)+ using nz0 nz1 zz - apply (simp add: algebra_simps field_split_simps power2_eq_square) + apply (simp add: field_split_simps power2_eq_square) apply algebra done qed @@ -3014,7 +3014,7 @@ have "\c. \u\ball 0 1. Arctan u - G u = c" proof (rule has_field_derivative_zero_constant) fix u :: complex assume "u \ ball 0 1" - hence u: "norm u < 1" by (simp add: dist_0_norm) + hence u: "norm u < 1" by (simp) define K where "K = (norm u + 1) / 2" from u and abs_Im_le_cmod[of u] have Im_u: "\Im u\ < 1" by linarith from u have K: "0 \ K" "norm u < K" "K < 1" by (simp_all add: K_def) @@ -3634,7 +3634,7 @@ assumes "z\<^sup>2 \ 1" shows "cos(Arcsin z) \ 0" proof - have eq: "(\ * z * (csqrt (1 - z\<^sup>2)))\<^sup>2 = z\<^sup>2 * (z\<^sup>2 - 1)" - by (simp add: power_mult_distrib algebra_simps) + by (simp add: algebra_simps) have "\ * z * (csqrt (1 - z\<^sup>2)) \ z\<^sup>2 - 1" proof assume "\ * z * (csqrt (1 - z\<^sup>2)) = z\<^sup>2 - 1" @@ -3665,7 +3665,7 @@ assumes "z\<^sup>2 \ 1" shows "sin(Arccos z) \ 0" proof - have eq: "(\ * z * (csqrt (1 - z\<^sup>2)))\<^sup>2 = -(z\<^sup>2) * (1 - z\<^sup>2)" - by (simp add: power_mult_distrib algebra_simps) + by (simp add: algebra_simps) have "\ * z * (csqrt (1 - z\<^sup>2)) \ 1 - z\<^sup>2" proof assume "\ * z * (csqrt (1 - z\<^sup>2)) = 1 - z\<^sup>2" @@ -3971,7 +3971,7 @@ shows "exp(2 * of_real pi * \ * of_nat j / of_nat n)^n = 1" proof - have *: "of_nat j * (complex_of_real pi * 2) = complex_of_real (2 * real j * pi)" - by (simp add: of_real_numeral) + by (simp) then show ?thesis apply (simp add: exp_of_nat_mult [symmetric] mult_ac exp_Euler) apply (simp only: * cos_of_real sin_of_real) @@ -4006,7 +4006,7 @@ note * = this show ?thesis using assms - by (simp add: exp_eq field_split_simps mult_ac of_real_numeral *) + by (simp add: exp_eq field_split_simps *) qed corollary bij_betw_roots_unity: diff -r 2e8f861d21d4 -r 07bec530f02e src/HOL/Analysis/Convex_Euclidean_Space.thy --- a/src/HOL/Analysis/Convex_Euclidean_Space.thy Mon Mar 30 10:35:10 2020 +0200 +++ b/src/HOL/Analysis/Convex_Euclidean_Space.thy Tue Mar 31 15:51:15 2020 +0200 @@ -346,7 +346,7 @@ proof- have "{a..b} = {a..} \ {..b}" by auto also have "interior \ = {a<..} \ {.. = {a<.. 0 \ u \ axis 1 1 \ 0 \ u \ axis 2 1 \ 0 \ u \ axis 3 1 \ 0" - by (clarsimp simp add: axis_def cross3_simps) (metis vector_3 exhaust_3) + by (clarsimp simp add: axis_def cross3_simps) (metis exhaust_3) lemma cross_dot_cancel: fixes x::"real^3" diff -r 2e8f861d21d4 -r 07bec530f02e src/HOL/Analysis/Derivative.thy --- a/src/HOL/Analysis/Derivative.thy Mon Mar 30 10:35:10 2020 +0200 +++ b/src/HOL/Analysis/Derivative.thy Tue Mar 31 15:51:15 2020 +0200 @@ -1056,7 +1056,7 @@ by (rule openE) then have "\c. \x\ball a e. f x = c" by (intro has_derivative_zero_constant) - (auto simp: at_within_open[OF _ open_ball] f convex_ball) + (auto simp: at_within_open[OF _ open_ball] f) with \0 have "\x\ball a e. f a = f x" by auto then show "eventually (\b. f a = f b) (at a within s)" @@ -2187,7 +2187,7 @@ show "((\y. (exp (y *\<^sub>R A) - exp (t *\<^sub>R A) - (y - t) *\<^sub>R (exp (t *\<^sub>R A) * A)) /\<^sub>R norm (y - t)) \ 0) (at t within T)" by (rule Lim_transform_eventually) - (auto simp: algebra_simps field_split_simps exp_add_commuting[symmetric]) + (auto simp: field_split_simps exp_add_commuting[symmetric]) qed (rule bounded_linear_scaleR_left) lemma exp_times_scaleR_commute: "exp (t *\<^sub>R A) * A = A * exp (t *\<^sub>R A)" diff -r 2e8f861d21d4 -r 07bec530f02e src/HOL/Analysis/Elementary_Metric_Spaces.thy --- a/src/HOL/Analysis/Elementary_Metric_Spaces.thy Mon Mar 30 10:35:10 2020 +0200 +++ b/src/HOL/Analysis/Elementary_Metric_Spaces.thy Tue Mar 31 15:51:15 2020 +0200 @@ -109,7 +109,7 @@ qed lemma open_contains_ball: "open S \ (\x\S. \e>0. ball x e \ S)" - by (simp add: open_dist subset_eq mem_ball Ball_def dist_commute) + by (simp add: open_dist subset_eq Ball_def dist_commute) lemma openI [intro?]: "(\x. x\S \ \e>0. ball x e \ S) \ open S" by (auto simp: open_contains_ball) diff -r 2e8f861d21d4 -r 07bec530f02e src/HOL/Analysis/Elementary_Normed_Spaces.thy --- a/src/HOL/Analysis/Elementary_Normed_Spaces.thy Mon Mar 30 10:35:10 2020 +0200 +++ b/src/HOL/Analysis/Elementary_Normed_Spaces.thy Tue Mar 31 15:51:15 2020 +0200 @@ -798,7 +798,7 @@ corollary cobounded_imp_unbounded: fixes S :: "'a::{real_normed_vector, perfect_space} set" shows "bounded (- S) \ \ bounded S" - using bounded_Un [of S "-S"] by (simp add: sup_compl_top) + using bounded_Un [of S "-S"] by (simp) subsection\<^marker>\tag unimportant\\Relations among convergence and absolute convergence for power series\ diff -r 2e8f861d21d4 -r 07bec530f02e src/HOL/Analysis/Embed_Measure.thy --- a/src/HOL/Analysis/Embed_Measure.thy Mon Mar 30 10:35:10 2020 +0200 +++ b/src/HOL/Analysis/Embed_Measure.thy Tue Mar 31 15:51:15 2020 +0200 @@ -251,7 +251,7 @@ have fg[simp]: "\A. inj_on (map_prod f g) A" "\A. inj_on f A" "\A. inj_on g A" using f g by (auto simp: inj_on_def) - note complete_lattice_class.Sup_insert[simp del] ccSup_insert[simp del] SUP_insert[simp del] + note complete_lattice_class.Sup_insert[simp del] ccSup_insert[simp del] ccSUP_insert[simp del] show sets: "sets ?L = sets (embed_measure (M \\<^sub>M N) (map_prod f g))" unfolding map_prod_def[symmetric] diff -r 2e8f861d21d4 -r 07bec530f02e src/HOL/Analysis/Equivalence_Lebesgue_Henstock_Integration.thy --- a/src/HOL/Analysis/Equivalence_Lebesgue_Henstock_Integration.thy Mon Mar 30 10:35:10 2020 +0200 +++ b/src/HOL/Analysis/Equivalence_Lebesgue_Henstock_Integration.thy Tue Mar 31 15:51:15 2020 +0200 @@ -3357,7 +3357,7 @@ have eq: "?g = (\x. \i\Basis. ((\y. \j\Basis. if j = i then y *\<^sub>R j else 0) \ (\x. norm(\j\Basis. if j = i then (x \ i) *\<^sub>R j else 0)) \ f) x)" - by (simp add: sum.delta) + by (simp) have *: "(\y. \j\Basis. if j = i then y *\<^sub>R j else 0) \ (\x. norm (\j\Basis. if j = i then (x \ i) *\<^sub>R j else 0)) \ f absolutely_integrable_on S" diff -r 2e8f861d21d4 -r 07bec530f02e src/HOL/Analysis/Equivalence_Measurable_On_Borel.thy --- a/src/HOL/Analysis/Equivalence_Measurable_On_Borel.thy Mon Mar 30 10:35:10 2020 +0200 +++ b/src/HOL/Analysis/Equivalence_Measurable_On_Borel.thy Tue Mar 31 15:51:15 2020 +0200 @@ -742,7 +742,7 @@ show "continuous_on UNIV (g \ (\ n))" for n :: nat unfolding \_def apply (intro continuous_on_compose2 [OF contg] continuous_intros conth) - apply (auto simp: aibi * mem_box less_max_iff_disj min_less_iff_disj algebra_simps field_split_simps) + apply (auto simp: aibi * mem_box less_max_iff_disj min_less_iff_disj field_split_simps) done show "(\n. (g \ \ n) x) \ g (f x)" if "x \ N" for x diff -r 2e8f861d21d4 -r 07bec530f02e src/HOL/Analysis/Extended_Real_Limits.thy --- a/src/HOL/Analysis/Extended_Real_Limits.thy Mon Mar 30 10:35:10 2020 +0200 +++ b/src/HOL/Analysis/Extended_Real_Limits.thy Tue Mar 31 15:51:15 2020 +0200 @@ -304,7 +304,7 @@ fix P d assume "0 < d" and "\y. y \ S \ y \ x \ dist y x < d \ P y" then have "S \ ball x d - {x} \ {x. P x}" - by (auto simp: zero_less_dist_iff dist_commute) + by (auto simp: dist_commute) then show "\r>0. Inf (f ` (Collect P)) \ Inf (f ` (S \ ball x r - {x}))" by (intro exI[of _ d] INF_mono conjI \0 < d\) auto next @@ -324,7 +324,7 @@ fix P d assume "0 < d" and "\y. y \ S \ y \ x \ dist y x < d \ P y" then have "S \ ball x d - {x} \ {x. P x}" - by (auto simp: zero_less_dist_iff dist_commute) + by (auto simp: dist_commute) then show "\r>0. Sup (f ` (S \ ball x r - {x})) \ Sup (f ` (Collect P))" by (intro exI[of _ d] SUP_mono conjI \0 < d\) auto next diff -r 2e8f861d21d4 -r 07bec530f02e src/HOL/Analysis/FPS_Convergence.thy --- a/src/HOL/Analysis/FPS_Convergence.thy Mon Mar 30 10:35:10 2020 +0200 +++ b/src/HOL/Analysis/FPS_Convergence.thy Tue Mar 31 15:51:15 2020 +0200 @@ -429,7 +429,7 @@ have "(\n. norm (c * z) ^ n /\<^sub>R fact n) sums exp (norm (c * z))" by (rule exp_converges) also have "(\n. norm (c * z) ^ n /\<^sub>R fact n) = (\n. norm (fps_nth (fps_exp c) n * z ^ n))" - by (rule ext) (simp add: norm_divide norm_mult norm_power field_split_simps power_mult_distrib) + by (rule ext) (simp add: norm_divide norm_mult norm_power field_split_simps) finally have "summable \" by (simp add: sums_iff) thus "summable (\n. fps_nth (fps_exp c) n * z ^ n)" by (rule summable_norm_cancel) @@ -585,7 +585,7 @@ lemma eval_fps_exp [simp]: fixes c :: "'a :: {banach, real_normed_field}" shows "eval_fps (fps_exp c) z = exp (c * z)" unfolding eval_fps_def exp_def - by (simp add: eval_fps_def exp_def scaleR_conv_of_real field_split_simps power_mult_distrib) + by (simp add: eval_fps_def exp_def scaleR_conv_of_real field_split_simps) text \ The case of division is more complicated and will therefore not be handled here. diff -r 2e8f861d21d4 -r 07bec530f02e src/HOL/Analysis/Fashoda_Theorem.thy --- a/src/HOL/Analysis/Fashoda_Theorem.thy Mon Mar 30 10:35:10 2020 +0200 +++ b/src/HOL/Analysis/Fashoda_Theorem.thy Tue Mar 31 15:51:15 2020 +0200 @@ -677,10 +677,10 @@ path_image(linepath(pathfinish g)(vector[(pathfinish g)$1,a$2 - 1])) \ path_image(linepath(vector[(pathfinish g)$1,a$2 - 1])(vector[b$1 + 1,a$2 - 1])) \ path_image(linepath(vector[b$1 + 1,a$2 - 1])(vector[b$1 + 1,b$2 + 3]))" using assms(1-2) - by(auto simp add: path_image_join path_linepath) + by(auto simp add: path_image_join) have abab: "cbox a b \ cbox ?a ?b" unfolding interval_cbox_cart[symmetric] - by (auto simp add:less_eq_vec_def forall_2 vector_2) + by (auto simp add:less_eq_vec_def forall_2) obtain z where "z \ path_image (linepath (vector [a $ 1 - 2, a $ 2 - 2]) (vector [pathstart f $ 1, a $ 2 - 2]) +++ diff -r 2e8f861d21d4 -r 07bec530f02e src/HOL/Analysis/Function_Metric.thy --- a/src/HOL/Analysis/Function_Metric.thy Mon Mar 30 10:35:10 2020 +0200 +++ b/src/HOL/Analysis/Function_Metric.thy Tue Mar 31 15:51:15 2020 +0200 @@ -187,7 +187,7 @@ have "dist x y \ 2 * Max {dist (x (from_nat n)) (y (from_nat n))|n. n \ N} + (1/2)^N" by (rule dist_fun_le_dist_first_terms) also have "... \ 2 * f + e / 8" - apply (rule add_mono) using ** \2^N > 8/e\ by(auto simp add: algebra_simps field_split_simps) + apply (rule add_mono) using ** \2^N > 8/e\ by(auto simp add: field_split_simps) also have "... \ e/2 + e/8" unfolding f_def by auto also have "... < e" @@ -331,7 +331,7 @@ also have "... < (1/2)^k * min e 1" using C \m \ N\ \n \ N\ by auto finally have "min (dist (u m i) (u n i)) 1 < min e 1" - by (auto simp add: algebra_simps field_split_simps) + by (auto simp add: field_split_simps) then show "dist (u m i) (u n i) < e" by auto qed then show "\N. \m n. N \ m \ N \ n \ dist (u m i) (u n i) < e" @@ -371,7 +371,7 @@ using dist_fun_le_dist_first_terms by auto also have "... \ 2 * e/4 + e/4" apply (rule add_mono) - using ** \2^N > 4/e\ less_imp_le by (auto simp add: algebra_simps field_split_simps) + using ** \2^N > 4/e\ less_imp_le by (auto simp add: field_split_simps) also have "... < e" by auto finally show ?thesis by simp qed diff -r 2e8f861d21d4 -r 07bec530f02e src/HOL/Analysis/Function_Topology.thy --- a/src/HOL/Analysis/Function_Topology.thy Mon Mar 30 10:35:10 2020 +0200 +++ b/src/HOL/Analysis/Function_Topology.thy Tue Mar 31 15:51:15 2020 +0200 @@ -198,7 +198,7 @@ have "(\\<^sub>E i\I. topspace (T i)) \ {(\\<^sub>E i\I. X i) |X. (\i. openin (T i) (X i)) \ finite {i. X i \ topspace (T i)}}" using openin_topspace not_finite_existsD by auto then show "(\\<^sub>E i\I. topspace (T i)) \ topspace (product_topology T I)" - unfolding product_topology_def using PiE_def by (auto simp add: topology_generated_by_topspace) + unfolding product_topology_def using PiE_def by (auto) qed lemma product_topology_basis: diff -r 2e8f861d21d4 -r 07bec530f02e src/HOL/Analysis/Further_Topology.thy --- a/src/HOL/Analysis/Further_Topology.thy Mon Mar 30 10:35:10 2020 +0200 +++ b/src/HOL/Analysis/Further_Topology.thy Tue Mar 31 15:51:15 2020 +0200 @@ -3682,7 +3682,7 @@ qed show "disjoint \" apply (clarsimp simp add: \_def pairwise_def disjnt_def add.commute [of _ "x*y" for x y] - image_add_ball ball_eq_ball_iff) + ball_eq_ball_iff) apply (rule disjoint_ballI) apply (auto simp: dist_norm neq_iff) by (metis norm_minus_commute xy)+ @@ -5321,7 +5321,7 @@ assumes "connected S" and C: "C \ components(- S)" shows "connected(frontier C)" apply (rule connected_frontier_simple) using C in_components_connected apply blast - by (metis Compl_eq_Diff_UNIV connected_UNIV assms top_greatest component_complement_connected) + by (metis assms component_complement_connected) lemma connected_frontier_disjoint: fixes S :: "'a :: euclidean_space set" diff -r 2e8f861d21d4 -r 07bec530f02e src/HOL/Analysis/Gamma_Function.thy --- a/src/HOL/Analysis/Gamma_Function.thy Mon Mar 30 10:35:10 2020 +0200 +++ b/src/HOL/Analysis/Gamma_Function.thy Tue Mar 31 15:51:15 2020 +0200 @@ -395,7 +395,7 @@ from d have "\2 * (cmod z + d)\ \ \0::real\" by (intro ceiling_mono mult_nonneg_nonneg add_nonneg_nonneg) simp_all hence "2 * (norm z + d) \ of_nat (nat \2 * (norm z + d)\)" unfolding N_def - by (simp_all add: le_of_int_ceiling) + by (simp_all) also have "... \ of_nat N" unfolding N_def by (subst of_nat_le_iff) (rule max.coboundedI2, rule max.cobounded1) finally have "of_nat N \ 2 * (norm z + d)" . @@ -540,7 +540,7 @@ also have "\ = z * of_real (harm n) - (\k=1..n. ln (1 + z / of_nat k))" by (simp add: harm_def sum_subtractf sum_distrib_left divide_inverse) also from n have "\ - ?g n = 0" - by (simp add: ln_Gamma_series_def sum_subtractf algebra_simps Ln_of_nat) + by (simp add: ln_Gamma_series_def sum_subtractf algebra_simps) finally show "(\kn. (\k 0" by (subst tendsto_cong[OF A]) simp_all @@ -583,7 +583,7 @@ with t_nz have "?f n t = 1 / (of_nat (Suc n) * (1 + of_nat (Suc n)/t))" by (simp add: field_split_simps eq_neg_iff_add_eq_0 del: of_nat_Suc) also have "norm \ = inverse (of_nat (Suc n)) * inverse (norm (of_nat (Suc n)/t + 1))" - by (simp add: norm_divide norm_mult field_split_simps add_ac del: of_nat_Suc) + by (simp add: norm_divide norm_mult field_split_simps del: of_nat_Suc) also { from z t_nz ball[OF t] have "of_nat (Suc n) / (4 * norm z) \ of_nat (Suc n) / (2 * norm t)" by (intro divide_left_mono mult_pos_pos) simp_all @@ -1110,7 +1110,7 @@ pochhammer z (Suc (Suc n)) / (fact n * exp (z * of_real (ln (of_nat n))))" by (subst pochhammer_rec) (simp add: rGamma_series_def field_simps exp_add exp_of_real) also from n have "\ = ?f n * rGamma_series z n" - by (subst pochhammer_rec') (simp_all add: field_split_simps rGamma_series_def add_ac) + by (subst pochhammer_rec') (simp_all add: field_split_simps rGamma_series_def) finally show "?f n * rGamma_series z n = z * rGamma_series (z + 1) n" .. qed moreover have "(\n. ?f n * rGamma_series z n) \ ((z+1) * 0 + 1) * rGamma z" @@ -1175,7 +1175,7 @@ have "1/2 > (0::real)" by simp from tendstoD[OF assms, OF this] show "eventually (\n. g n / Gamma_series z n * Gamma_series z n = g n) sequentially" - by (force elim!: eventually_mono simp: dist_real_def dist_0_norm) + by (force elim!: eventually_mono simp: dist_real_def) from assms have "(\n. g n / Gamma_series z n * Gamma_series z n) \ 1 * Gamma z" by (intro tendsto_intros) thus "(\n. g n / Gamma_series z n * Gamma_series z n) \ Gamma z" by simp @@ -1189,7 +1189,7 @@ proof (rule Lim_transform_eventually) have "1/2 > (0::real)" by simp from tendstoD[OF assms(2), OF this] show "eventually (\n. g n * f n / f n = g n) sequentially" - by (force elim!: eventually_mono simp: dist_real_def dist_0_norm) + by (force elim!: eventually_mono simp: dist_real_def) from assms have "(\n. g n * f n / f n) \ 1 / rGamma z" by (intro tendsto_divide assms) (simp_all add: rGamma_eq_zero_iff) thus "(\n. g n * f n / f n) \ Gamma z" by (simp add: Gamma_def divide_inverse) @@ -1409,13 +1409,13 @@ \ d) - euler_mascheroni *\<^sub>R 1 in (\y. (rGamma y - rGamma z + rGamma z * d * (y - z)) /\<^sub>R cmod (y - z)) \z\ 0" by (simp add: has_field_derivative_def has_derivative_def Digamma_def sums_def [abs_def] - netlimit_at of_real_def[symmetric] suminf_def) + of_real_def[symmetric] suminf_def) next fix n :: nat from has_field_derivative_rGamma_complex_nonpos_Int[of n] show "let z = - of_nat n in (\y. (rGamma y - rGamma z - (- 1) ^ n * prod of_nat {1..n} * (y - z)) /\<^sub>R cmod (y - z)) \z\ 0" - by (simp add: has_field_derivative_def has_derivative_def fact_prod netlimit_at Let_def) + by (simp add: has_field_derivative_def has_derivative_def fact_prod Let_def) next fix z :: complex from rGamma_series_complex_converges[of z] have "rGamma_series z \ rGamma z" @@ -1535,7 +1535,7 @@ fix n :: nat assume n: "n > 0" have "Re (rGamma_series (of_real x) n) = Re (of_real (pochhammer x (Suc n)) / (fact n * exp (of_real (x * ln (real_of_nat n)))))" - using n by (simp add: rGamma_series_def powr_def Ln_of_nat pochhammer_of_real) + using n by (simp add: rGamma_series_def powr_def pochhammer_of_real) also from n have "\ = Re (of_real ((pochhammer x (Suc n)) / (fact n * (exp (x * ln (real_of_nat n))))))" by (subst exp_of_real) simp @@ -1569,7 +1569,7 @@ \ d) - euler_mascheroni *\<^sub>R 1 in (\y. (rGamma y - rGamma x + rGamma x * d * (y - x)) /\<^sub>R norm (y - x)) \x\ 0" by (simp add: has_field_derivative_def has_derivative_def Digamma_def sums_def [abs_def] - netlimit_at of_real_def[symmetric] suminf_def) + of_real_def[symmetric] suminf_def) next fix n :: nat have "(rGamma has_field_derivative (-1)^n * fact n) (at (- of_nat n :: real))" @@ -1577,7 +1577,7 @@ simp: Polygamma_of_real rGamma_real_def [abs_def]) thus "let x = - of_nat n in (\y. (rGamma y - rGamma x - (- 1) ^ n * prod of_nat {1..n} * (y - x)) /\<^sub>R norm (y - x)) \x::real\ 0" - by (simp add: has_field_derivative_def has_derivative_def fact_prod netlimit_at Let_def) + by (simp add: has_field_derivative_def has_derivative_def fact_prod Let_def) next fix x :: real have "rGamma_series x \ rGamma x" @@ -1619,7 +1619,7 @@ assume xn: "x > 0" "n > 0" have "Ln (complex_of_real x / of_nat k + 1) = of_real (ln (x / of_nat k + 1))" if "k \ 1" for k using that xn by (subst Ln_of_real [symmetric]) (auto intro!: add_nonneg_pos simp: field_simps) - with xn show ?thesis by (simp add: ln_Gamma_series_def Ln_of_nat Ln_of_real) + with xn show ?thesis by (simp add: ln_Gamma_series_def Ln_of_real) qed lemma ln_Gamma_real_converges: @@ -2061,7 +2061,7 @@ by (intro not_in_Ints_imp_not_in_nonpos_Ints) simp_all with lim[of "1/2 :: 'a"] have "?h \ 2 * Gamma (1/2 :: 'a)" by (simp add: exp_of_real) from LIMSEQ_unique[OF this lim[OF assms]] z' show ?thesis - by (simp add: field_split_simps Gamma_eq_zero_iff ring_distribs exp_diff exp_of_real ac_simps) + by (simp add: field_split_simps Gamma_eq_zero_iff ring_distribs exp_diff exp_of_real) qed text \ @@ -2126,13 +2126,13 @@ have h_eq: "h t = h2 t" if "abs (Re t) < 1" for t proof - - from that have t: "t \ \ \ t = 0" by (auto elim!: Ints_cases simp: dist_0_norm) + from that have t: "t \ \ \ t = 0" by (auto elim!: Ints_cases) hence "h t = a*cot (a*t) - 1/t + Digamma (1 + t) - Digamma (1 - t)" unfolding h_def using Digamma_plus1[of t] by (force simp: field_simps a_def) also have "a*cot (a*t) - 1/t = (F t) / (G t)" using t by (auto simp add: divide_simps sin_eq_0 cot_def a_def F_def G_def) also have "\ = (\n. f n * (a*t)^n) / (\n. g n * (a*t)^n)" - using sums[of t] that by (simp add: sums_iff dist_0_norm) + using sums[of t] that by (simp add: sums_iff) finally show "h t = h2 t" by (simp only: h2_def) qed @@ -2167,7 +2167,7 @@ have d: "abs (Re d) < 1" "norm z < norm d" by (simp_all add: d_def norm_mult del: of_real_add) have "eventually (\z. h z = h2 z) (nhds z)" using eventually_nhds_in_nhd[of z ?A] using h_eq z - by (auto elim!: eventually_mono simp: dist_0_norm) + by (auto elim!: eventually_mono) moreover from sums(2)[OF z] z have nz: "(\n. g n * (a * z) ^ n) \ 0" unfolding G_def by (auto simp: sums_iff sin_eq_0 a_def) @@ -2326,7 +2326,7 @@ show "g z = of_real pi * Gamma (1 + z) * Gamma (1 - z) * ?t z" proof (cases "z = 0") assume z': "z \ 0" - with z have z'': "z \ \\<^sub>\\<^sub>0" "z \ \" by (auto elim!: Ints_cases simp: dist_0_norm) + with z have z'': "z \ \\<^sub>\\<^sub>0" "z \ \" by (auto elim!: Ints_cases) from Gamma_plus1[OF this(1)] have "Gamma z = Gamma (z + 1) / z" by simp with z'' z' show ?thesis by (simp add: g_def ac_simps) qed (simp add: g_def) @@ -2471,7 +2471,7 @@ show "\z\B. norm (h' z) \ M/2" proof fix t :: complex assume t: "t \ B" - from h'_eq[of t] t have "h' t = (h' (t/2) + h' ((t+1)/2)) / 4" by (simp add: dist_0_norm) + from h'_eq[of t] t have "h' t = (h' (t/2) + h' ((t+1)/2)) / 4" by (simp) also have "norm \ = norm (h' (t/2) + h' ((t+1)/2)) / 4" by simp also have "norm (h' (t/2) + h' ((t+1)/2)) \ norm (h' (t/2)) + norm (h' ((t+1)/2))" by (rule norm_triangle_ineq) @@ -2482,7 +2482,7 @@ also have "(M + M) / 4 = M / 2" by simp finally show "norm (h' t) \ M/2" by - simp_all qed - qed (insert bdd, auto simp: cball_eq_empty) + qed (insert bdd, auto) hence "M \ 0" by simp finally show "h' z = 0" by simp qed @@ -2512,7 +2512,7 @@ with c have A: "h z * g z = 0" for z by simp hence "(g has_field_derivative 0) (at z)" for z using g_g'[of z] by simp hence "\c'. \z\UNIV. g z = c'" by (intro has_field_derivative_zero_constant) simp_all - then obtain c' where c: "\z. g z = c'" by (force simp: dist_0_norm) + then obtain c' where c: "\z. g z = c'" by (force) from this[of 0] have "c' = pi" unfolding g_def by simp with c have "g z = pi" by simp @@ -2547,7 +2547,7 @@ lemma Gamma_reflection_complex': "Gamma z * Gamma (- z :: complex) = - of_real pi / (z * sin (of_real pi * z))" - using rGamma_reflection_complex'[of z] by (force simp add: Gamma_def field_split_simps mult_ac) + using rGamma_reflection_complex'[of z] by (force simp add: Gamma_def field_split_simps) @@ -2675,7 +2675,7 @@ from z have z': "z \ 0" by auto have "eventually (\n. ?r' n = ?r n) sequentially" - using z by (auto simp: field_split_simps Gamma_series_def ring_distribs exp_diff ln_div add_ac + using z by (auto simp: field_split_simps Gamma_series_def ring_distribs exp_diff ln_div intro: eventually_mono eventually_gt_at_top[of "0::nat"] dest: pochhammer_eq_0_imp_nonpos_Int) moreover have "?r' \ exp (z * of_real (ln 1))" by (intro tendsto_intros LIMSEQ_Suc_n_over_n) simp_all @@ -2819,7 +2819,7 @@ have "(\n. of_nat ((k + n) choose n) / of_real (exp (of_nat k * ln (real_of_nat n)))) \ 1 / Gamma (of_nat (Suc k) :: 'a)" (is "?f \ _") using Gamma_gbinomial[of "of_nat k :: 'a"] - by (simp add: binomial_gbinomial add_ac Gamma_def field_split_simps exp_of_real [symmetric] exp_minus) + by (simp add: binomial_gbinomial Gamma_def field_split_simps exp_of_real [symmetric] exp_minus) also have "Gamma (of_nat (Suc k)) = fact k" by (simp add: Gamma_fact) finally show "?f \ 1 / fact k" . @@ -2862,7 +2862,7 @@ next case False with \z = 0\ show ?thesis - by (simp_all add: Beta_pole1 one_minus_of_nat_in_nonpos_Ints_iff gbinomial_1) + by (simp_all add: Beta_pole1 one_minus_of_nat_in_nonpos_Ints_iff) qed next case False @@ -2885,7 +2885,7 @@ have "(z gchoose n) = Gamma (z + 2) / (z + 1) / (fact n * Gamma (z - of_nat n + 1))" by (subst gbinomial_Beta[OF assms]) (simp_all add: Beta_def Gamma_fact [symmetric] add_ac) also from assms have "Gamma (z + 2) / (z + 1) = Gamma (z + 1)" - using Gamma_plus1[of "z+1"] by (auto simp add: field_split_simps mult_ac add_ac) + using Gamma_plus1[of "z+1"] by (auto simp add: field_split_simps) finally show ?thesis . qed @@ -3073,7 +3073,7 @@ have "eventually (\n. Gamma_series z n = of_nat n powr z * fact n / pochhammer z (n+1)) sequentially" using eventually_gt_at_top[of "0::nat"] - by eventually_elim (simp add: powr_def algebra_simps Ln_of_nat Gamma_series_def) + by eventually_elim (simp add: powr_def algebra_simps Gamma_series_def) from this and Gamma_series_LIMSEQ[of z] have C: "(\k. of_nat k powr z * fact k / pochhammer z (k+1)) \ Gamma z" by (blast intro: Lim_transform_eventually) @@ -3441,7 +3441,7 @@ fix n :: nat and x :: real assume x: "x \ ball 0 1" { fix k :: nat assume k: "k \ 1" - from x have "x^2 < 1" by (auto simp: dist_0_norm abs_square_less_1) + from x have "x^2 < 1" by (auto simp: abs_square_less_1) also from k have "\ \ of_nat k^2" by simp finally have "(1 - x^2 / of_nat k^2) \ {0..1}" using k by (simp_all add: field_simps del: of_nat_Suc) @@ -3470,7 +3470,7 @@ by (simp add: eval_nat_numeral) from sums_divide[OF this, of "x^3 * pi"] x have "(\n. - (sin_coeff (n+3) * pi^(n+2) * x^n)) sums ((1 - sin (pi*x) / (pi*x)) / x^2)" - by (simp add: field_split_simps eval_nat_numeral power_mult_distrib mult_ac) + by (simp add: field_split_simps eval_nat_numeral) with x have "(\n. - (sin_coeff (n+3) * pi^(n+2) * x^n)) sums (g x / x^2)" by (simp add: g_def) hence "f' x = g x / x^2" by (simp add: sums_iff f'_def) @@ -3485,7 +3485,7 @@ assume x: "x \ 0" from summable_divide[OF sums_summable[OF sums_split_initial_segment[OF sin_converges[of "pi*x"]], of 3], of "-pi*x^3"] x - show ?thesis by (simp add: mult_ac power_mult_distrib field_split_simps eval_nat_numeral) + show ?thesis by (simp add: field_split_simps eval_nat_numeral) qed (simp only: summable_0_powser) qed hence "f' \ 0 \ f' 0" by (simp add: isCont_def) diff -r 2e8f861d21d4 -r 07bec530f02e src/HOL/Analysis/Henstock_Kurzweil_Integration.thy --- a/src/HOL/Analysis/Henstock_Kurzweil_Integration.thy Mon Mar 30 10:35:10 2020 +0200 +++ b/src/HOL/Analysis/Henstock_Kurzweil_Integration.thy Tue Mar 31 15:51:15 2020 +0200 @@ -1526,7 +1526,7 @@ apply (rule sum.cong) using assms apply simp - apply (metis abs_of_nonneg assms(1) content_pos_le division_ofD(4)) + apply (metis abs_of_nonneg content_pos_le) done have e: "0 \ e" using assms(2) norm_ge_zero order_trans by blast diff -r 2e8f861d21d4 -r 07bec530f02e src/HOL/Analysis/Homeomorphism.thy --- a/src/HOL/Analysis/Homeomorphism.thy Mon Mar 30 10:35:10 2020 +0200 +++ b/src/HOL/Analysis/Homeomorphism.thy Tue Mar 31 15:51:15 2020 +0200 @@ -1993,7 +1993,7 @@ have "q' t = (h \ (*\<^sub>R) 2) t" if "0 \ t" "t \ 1/2" for t proof (rule covering_space_lift_unique [OF cov, of q' 0 "h \ (*\<^sub>R) 2" "{0..1/2}" "f \ g \ (*\<^sub>R) 2" t]) show "q' 0 = (h \ (*\<^sub>R) 2) 0" - by (metis \pathstart q' = pathstart q\ comp_def h pastq pathstart_def pth_4(2)) + by (metis \pathstart q' = pathstart q\ comp_def h(3) pastq pathstart_def pth_4(2)) show "continuous_on {0..1/2} (f \ g \ (*\<^sub>R) 2)" apply (intro continuous_intros continuous_on_compose continuous_on_path [OF \path g\] continuous_on_subset [OF contf]) using g(2) path_image_def by fastforce+ diff -r 2e8f861d21d4 -r 07bec530f02e src/HOL/Analysis/Homotopy.thy --- a/src/HOL/Analysis/Homotopy.thy Mon Mar 30 10:35:10 2020 +0200 +++ b/src/HOL/Analysis/Homotopy.thy Tue Mar 31 15:51:15 2020 +0200 @@ -901,7 +901,7 @@ apply (rule pip [unfolded path_image_def, THEN subsetD]) apply (rule image_eqI, blast) apply (simp add: algebra_simps) - by (metis add_mono_thms_linordered_semiring(1) affine_ineq linear mult.commute mult.left_neutral mult_right_mono not_le + by (metis add_mono_thms_linordered_semiring(1) affine_ineq linear mult.commute mult.left_neutral mult_right_mono add.commute zero_le_numeral) have qs: "\a b. \4 * b \ 3; \ b * 2 \ 1\ \ q (4 * b - 2) \ s" using path_image_def piq by fastforce diff -r 2e8f861d21d4 -r 07bec530f02e src/HOL/Analysis/Improper_Integral.thy --- a/src/HOL/Analysis/Improper_Integral.thy Mon Mar 30 10:35:10 2020 +0200 +++ b/src/HOL/Analysis/Improper_Integral.thy Tue Mar 31 15:51:15 2020 +0200 @@ -445,7 +445,7 @@ obtain u v where K: "K = cbox u v" "K \ {}" "K \ cbox a b" using K cbox_division_memE [OF _ div] by (meson div_subset_cbox) with i show "extend K \ {}" "extend K \ cbox a b" - apply (auto simp: extend_def subset_box box_ne_empty sum_if_inner) + apply (auto simp: extend_def subset_box box_ne_empty) by fastforce qed have int_extend_disjoint: @@ -468,7 +468,7 @@ and xv: "\k. k \ Basis - {i} \ x \ k < v \ k" and wx: "\k. k \ Basis - {i} \ w \ k < x \ k" and xz: "\k. k \ Basis - {i} \ x \ k < z \ k" - using that K1 K2 i by (auto simp: extend_def box_ne_empty sum_if_inner mem_box) + using that K1 K2 i by (auto simp: extend_def box_ne_empty mem_box) have "box u v \ {}" "box w z \ {}" using cboxes interior_cbox by (auto simp: content_eq_0_interior dest: mt) then obtain q s @@ -630,7 +630,7 @@ show "\Dlec \ cbox a b'" using Dlec_def div S by (auto simp: b'_def division_of_def mem_box) show "(\K\Dlec. K \ {x. x \ i = a \ i} \ {}) \ (\K\Dlec. K \ {x. x \ i = b' \ i} \ {})" - using nonmt by (fastforce simp: Dlec_def b'_def sum_if_inner i) + using nonmt by (fastforce simp: Dlec_def b'_def i) qed (use i Dlec_def in auto) moreover have "(\K\Dlec. content K / (interval_upperbound K \ i - interval_lowerbound K \ i)) = @@ -640,7 +640,7 @@ unfolding Dlec_def using \finite \\ apply (auto simp: sum.mono_neutral_left) done moreover have "(b' \ i - a \ i) = (c - a \ i)" - by (simp add: b'_def sum_if_inner i) + by (simp add: b'_def i) ultimately have lec: "(c - a \ i) * (\K\\. ((\K. content K / (interval_upperbound K \ i - interval_lowerbound K \ i)) \ ((\K. K \ {x. x \ i \ c}))) K) \ content(cbox a b')" @@ -657,7 +657,7 @@ show "\Dgec \ cbox a' b" using Dgec_def div S by (auto simp: a'_def division_of_def mem_box) show "(\K\Dgec. K \ {x. x \ i = a' \ i} \ {}) \ (\K\Dgec. K \ {x. x \ i = b \ i} \ {})" - using nonmt by (fastforce simp: Dgec_def a'_def sum_if_inner i) + using nonmt by (fastforce simp: Dgec_def a'_def i) qed (use i Dgec_def in auto) moreover have "(\K\Dgec. content K / (interval_upperbound K \ i - interval_lowerbound K \ i)) = @@ -667,7 +667,7 @@ unfolding Dgec_def using \finite \\ apply (auto simp: sum.mono_neutral_left) done moreover have "(b \ i - a' \ i) = (b \ i - c)" - by (simp add: a'_def sum_if_inner i) + by (simp add: a'_def i) ultimately have gec: "(b \ i - c) * (\K\\. ((\K. content K / (interval_upperbound K \ i - interval_lowerbound K \ i)) \ ((\K. K \ {x. x \ i \ c}))) K) \ content(cbox a' b)" @@ -679,7 +679,7 @@ proof assume c: "c = a \ i" then have "a' = a" - apply (simp add: sum_if_inner i a'_def cong: if_cong) + apply (simp add: i a'_def cong: if_cong) using euclidean_representation [of a] sum.cong [OF refl, of Basis "\i. (a \ i) *\<^sub>R i"] by presburger then have "content (cbox a' b) \ 2 * content (cbox a b)" by simp moreover @@ -701,7 +701,7 @@ next assume c: "c = b \ i" then have "b' = b" - apply (simp add: sum_if_inner i b'_def cong: if_cong) + apply (simp add: i b'_def cong: if_cong) using euclidean_representation [of b] sum.cong [OF refl, of Basis "\i. (b \ i) *\<^sub>R i"] by presburger then have "content (cbox a b') \ 2 * content (cbox a b)" by simp moreover @@ -726,14 +726,14 @@ have prod_if: "(\k\Basis \ - {i}. f k) = (\k\Basis. f k) / f i" if "f i \ (0::real)" for f using that mk_disjoint_insert [OF i] apply (clarsimp simp add: field_split_simps) - by (metis Int_insert_left_if0 finite_Basis finite_insert le_iff_inf mult.commute order_refl prod.insert subset_Compl_singleton) + by (metis Int_insert_left_if0 finite_Basis finite_insert le_iff_inf order_refl prod.insert subset_Compl_singleton) have abc: "a \ i < c" "c < b \ i" using False assms by auto then have "(\K\\. ((\K. content K / (interval_upperbound K \ i - interval_lowerbound K \ i)) \ ((\K. K \ {x. x \ i \ c}))) K) \ content(cbox a b') / (c - a \ i)" "(\K\\. ((\K. content K / (interval_upperbound K \ i - interval_lowerbound K \ i)) \ ((\K. K \ {x. x \ i \ c}))) K) \ content(cbox a' b) / (b \ i - c)" - using lec gec by (simp_all add: field_split_simps mult.commute) + using lec gec by (simp_all add: field_split_simps) moreover have "(\K\\. content K / (interval_upperbound K \ i - interval_lowerbound K \ i)) \ (\K\\. ((\K. content K / (interval_upperbound K \ i - interval_lowerbound K \ i)) \ ((\K. K \ {x. x \ i \ c}))) K) + @@ -780,7 +780,7 @@ \ 2 * content (cbox a b) / (b \ i - a \ i)" by linarith then show ?thesis - using abc by (simp add: field_split_simps mult.commute) + using abc by (simp add: field_split_simps) qed qed @@ -856,7 +856,7 @@ have "gauge (\x. ball x (\ * (INF m\Basis. b \ m - a \ m) / ((8 * norm (f x) + 8) * content (cbox a b))))" using \0 < content (cbox a b)\ \0 < \\ a_less_b - apply (auto simp: gauge_def field_split_simps mult_less_0_iff zero_less_mult_iff add_nonneg_eq_0_iff finite_less_Inf_iff) + apply (auto simp: gauge_def field_split_simps add_nonneg_eq_0_iff finite_less_Inf_iff) apply (meson add_increasing measure_nonneg mult_nonneg_nonneg norm_ge_zero not_le zero_le_numeral) done then have "gauge \" @@ -936,7 +936,7 @@ by simp also have "... < \ * (b \ i - a \ i) / dist u v / (4 * content (cbox a b))" using duv dist_uv contab_gt0 - apply (simp add: field_split_simps algebra_simps mult_less_0_iff zero_less_mult_iff split: if_split_asm) + apply (simp add: field_split_simps split: if_split_asm) by (meson add_nonneg_nonneg linorder_not_le measure_nonneg mult_nonneg_nonneg norm_ge_zero zero_le_numeral) also have "... = \ * (b \ i - a \ i) / norm (v - u) / (4 * content (cbox a b))" by (simp add: dist_norm norm_minus_commute) @@ -1239,7 +1239,7 @@ obtain u v where uv: "K = cbox u v" using T''_tagged \(x,K) \ T''\ by blast then have "connected K" - by (simp add: is_interval_cbox is_interval_connected) + by (simp add: is_interval_connected) then have "(\z \ K. z \ i = c)" using y connected_ivt_component by fastforce then show ?thesis @@ -1883,7 +1883,7 @@ then obtain m::nat where m: "floor(n * f x) = int m" using nonneg_int_cases zero_le_floor by blast then have kn: "real k / real n \ f x \ k \ m" for k - using \n \ 0\ by (simp add: field_split_simps mult.commute) linarith + using \n \ 0\ by (simp add: field_split_simps) linarith then have "Suc n / real n \ f x \ Suc n \ m" by blast have "real n * f x \ real n" @@ -1894,7 +1894,7 @@ by (subst sum.inter_restrict) (auto simp: kn) also have "\ < inverse n" using \m \ n\ \n \ 0\ m - by (simp add: min_absorb2 field_split_simps mult.commute) linarith + by (simp add: min_absorb2 field_split_simps) linarith finally show ?thesis . qed @@ -2222,7 +2222,7 @@ proof (subst has_integral_cong) show "g x * f x - g a * f x = (g b - g a) * h x *\<^sub>R f x" if "x \ {a..b}" for x - using 1 that by (simp add: h_def field_split_simps algebra_simps) + using 1 that by (simp add: h_def field_split_simps) show "((\x. (g b - g a) * h x *\<^sub>R f x) has_integral (g b - g a) * integral {c..b} f) {a..b}" using has_integral_mult_right [OF c, of "g b - g a"] . qed diff -r 2e8f861d21d4 -r 07bec530f02e src/HOL/Analysis/Infinite_Set_Sum.thy --- a/src/HOL/Analysis/Infinite_Set_Sum.thy Mon Mar 30 10:35:10 2020 +0200 +++ b/src/HOL/Analysis/Infinite_Set_Sum.thy Tue Mar 31 15:51:15 2020 +0200 @@ -154,7 +154,7 @@ lemma abs_summable_on_altdef': "A \ B \ f abs_summable_on A \ set_integrable (count_space B) A f" unfolding abs_summable_on_def set_integrable_def - by (metis (no_types) Pow_iff abs_summable_on_def inf.orderE integrable_restrict_space restrict_count_space_subset set_integrable_def sets_count_space space_count_space) + by (metis (no_types) Pow_iff abs_summable_on_def inf.orderE integrable_restrict_space restrict_count_space_subset sets_count_space space_count_space) lemma abs_summable_on_norm_iff [simp]: "(\x. norm (f x)) abs_summable_on A \ f abs_summable_on A" diff -r 2e8f861d21d4 -r 07bec530f02e src/HOL/Analysis/Jordan_Curve.thy --- a/src/HOL/Analysis/Jordan_Curve.thy Mon Mar 30 10:35:10 2020 +0200 +++ b/src/HOL/Analysis/Jordan_Curve.thy Tue Mar 31 15:51:15 2020 +0200 @@ -624,7 +624,7 @@ then show "connected (- closure (inside (?\1 \ ?\)))" by (metis Compl_Un outside_inside co_out1c closure_Un_frontier) have if2: "- (inside (?\2 \ ?\) \ frontier (inside (?\2 \ ?\))) = - ?\2 \ - ?\ \ - inside (?\2 \ ?\)" - by (metis (no_types, lifting) Int_commute Jordan_inside_outside c c2 compl_sup path_image_join path_image_reversepath pathfinish_join pathfinish_reversepath pathstart_join pathstart_reversepath sp closure_Un_frontier fr_out(2)) + by (metis (no_types, lifting) Int_commute Jordan_inside_outside c c2 compl_sup path_image_join path_image_reversepath pathfinish_join pathfinish_reversepath pathstart_join pathstart_reversepath sp(3) closure_Un_frontier fr_out(2)) then show "connected (- closure (inside (?\2 \ ?\)))" by (metis Compl_Un outside_inside co_out2c closure_Un_frontier) have "connected(?\)" diff -r 2e8f861d21d4 -r 07bec530f02e src/HOL/Analysis/Lipschitz.thy --- a/src/HOL/Analysis/Lipschitz.thy Mon Mar 30 10:35:10 2020 +0200 +++ b/src/HOL/Analysis/Lipschitz.thy Tue Mar 31 15:51:15 2020 +0200 @@ -684,7 +684,7 @@ from this elim d[of "rx (ry (rt n))"] have "\ < dist (f (?t n) (?y n)) (f (?t n) (?x n)) / rx (ry (rt (n)))" using lx'(2) ly'(2) lt'(2) \0 < rx _\ - by (auto simp add: field_split_simps algebra_simps strict_mono_def) + by (auto simp add: field_split_simps strict_mono_def) also have "\ \ diameter ?S / n" by (force intro!: \0 < n\ strict_mono_def xy diameter_bounded_bound frac_le compact_imp_bounded compact t diff -r 2e8f861d21d4 -r 07bec530f02e src/HOL/Analysis/Measure_Space.thy --- a/src/HOL/Analysis/Measure_Space.thy Mon Mar 30 10:35:10 2020 +0200 +++ b/src/HOL/Analysis/Measure_Space.thy Tue Mar 31 15:51:15 2020 +0200 @@ -1574,7 +1574,7 @@ by (cases "emeasure M A" rule: ennreal_cases) (auto simp: measure_def) lemma measure_zero_top: "emeasure M A = top \ measure M A = 0" - by (simp add: measure_def enn2ereal_top) + by (simp add: measure_def) lemma measure_eq_emeasure_eq_ennreal: "0 \ x \ emeasure M A = ennreal x \ measure M A = x" using emeasure_eq_ennreal_measure[of M A] diff -r 2e8f861d21d4 -r 07bec530f02e src/HOL/Analysis/Nonnegative_Lebesgue_Integration.thy --- a/src/HOL/Analysis/Nonnegative_Lebesgue_Integration.thy Mon Mar 30 10:35:10 2020 +0200 +++ b/src/HOL/Analysis/Nonnegative_Lebesgue_Integration.thy Tue Mar 31 15:51:15 2020 +0200 @@ -166,7 +166,7 @@ (if y = f x then y * indicator (f -` {y} \ space M) x else 0))" by (auto intro!: sum.cong) also have "... = f x * indicator (f -` {f x} \ space M) x" - using assms by (auto dest: simple_functionD simp: sum.delta) + using assms by (auto dest: simple_functionD) also have "... = f x" using x by (auto simp: indicator_def) finally show ?thesis by auto qed @@ -327,10 +327,10 @@ { fix d :: nat have "\2^d::real\ * \2^m * enn2real (min (of_nat m) (u x))\ \ \2^d * (2^m * enn2real (min (of_nat m) (u x)))\" - by (rule le_mult_floor) (auto simp: enn2real_nonneg) + by (rule le_mult_floor) (auto) also have "\ \ \2^d * (2^m * enn2real (min (of_nat d + of_nat m) (u x)))\" by (intro floor_mono mult_mono enn2real_mono min.mono) - (auto simp: enn2real_nonneg min_less_iff_disj of_nat_less_top) + (auto simp: min_less_iff_disj of_nat_less_top) finally have "f m x \ f (m + d) x" unfolding f_def by (auto simp: field_simps power_add * simp del: of_int_mult) } @@ -348,7 +348,7 @@ by (cases "u x" rule: ennreal_cases) (auto split: split_min intro!: floor_mono) then have "f i ` space M \ (\n. real_of_int n / 2^i) ` {0 .. of_nat i * 2^i}" - unfolding floor_of_int by (auto simp: f_def enn2real_nonneg intro!: imageI) + unfolding floor_of_int by (auto simp: f_def intro!: imageI) then show "finite (f i ` space M)" by (rule finite_subset) auto show "f i \ borel_measurable M" @@ -680,7 +680,7 @@ proof cases assume "finite P" from this assms show ?thesis - by induct (auto simp: simple_function_sum simple_integral_add sum_nonneg) + by induct (auto) qed auto lemma simple_integral_mult[simp]: @@ -1090,8 +1090,7 @@ by (subst nn_integral_eq_simple_integral) (auto simp: simple_integral_indicator) lemma nn_integral_cmult_indicator: "A \ sets M \ (\\<^sup>+ x. c * indicator A x \M) = c * emeasure M A" - by (subst nn_integral_eq_simple_integral) - (auto simp: simple_function_indicator simple_integral_indicator) + by (subst nn_integral_eq_simple_integral) (auto) lemma nn_integral_indicator': assumes [measurable]: "A \ space M \ sets M" @@ -1120,7 +1119,7 @@ lemma nn_integral_indicator_singleton'[simp]: assumes [measurable]: "{y} \ sets M" shows "(\\<^sup>+x. ennreal (f x * indicator {y} x) \M) = f y * emeasure M {y}" - by (subst nn_integral_set_ennreal[symmetric]) (simp add: nn_integral_indicator_singleton) + by (subst nn_integral_set_ennreal[symmetric]) (simp) lemma nn_integral_add: "f \ borel_measurable M \ g \ borel_measurable M \ (\\<^sup>+ x. f x + g x \M) = integral\<^sup>N M f + integral\<^sup>N M g" diff -r 2e8f861d21d4 -r 07bec530f02e src/HOL/Analysis/Ordered_Euclidean_Space.thy --- a/src/HOL/Analysis/Ordered_Euclidean_Space.thy Mon Mar 30 10:35:10 2020 +0200 +++ b/src/HOL/Analysis/Ordered_Euclidean_Space.thy Tue Mar 31 15:51:15 2020 +0200 @@ -48,7 +48,7 @@ lemma inner_Basis_inf_left: "i \ Basis \ inf x y \ i = inf (x \ i) (y \ i)" and inner_Basis_sup_left: "i \ Basis \ sup x y \ i = sup (x \ i) (y \ i)" - by (simp_all add: eucl_inf eucl_sup inner_sum_left inner_Basis if_distrib comm_monoid_add_class.sum.delta + by (simp_all add: eucl_inf eucl_sup inner_sum_left inner_Basis if_distrib cong: if_cong) lemma inner_Basis_INF_left: "i \ Basis \ (INF x\X. f x) \ i = (INF x\X. f x \ i)" @@ -118,7 +118,7 @@ hence "Inf ?proj = x \ b" by (auto intro!: conditionally_complete_lattice_class.cInf_eq_minimum) hence "x \ b = Inf X \ b" - by (auto simp: eucl_Inf inner_sum_left inner_Basis if_distrib \b \ Basis\ sum.delta + by (auto simp: eucl_Inf inner_sum_left inner_Basis if_distrib \b \ Basis\ cong: if_cong) with x show "\x. x \ X \ x \ b = Inf X \ b \ (\y. y \ X \ x \ b \ y \ b)" by blast qed @@ -140,7 +140,7 @@ hence "Sup ?proj = x \ b" by (auto intro!: cSup_eq_maximum) hence "x \ b = Sup X \ b" - by (auto simp: eucl_Sup[where 'a='a] inner_sum_left inner_Basis if_distrib \b \ Basis\ sum.delta + by (auto simp: eucl_Sup[where 'a='a] inner_sum_left inner_Basis if_distrib \b \ Basis\ cong: if_cong) with x show "\x. x \ X \ x \ b = Sup X \ b \ (\y. y \ X \ y \ b \ x \ b)" by blast qed diff -r 2e8f861d21d4 -r 07bec530f02e src/HOL/Analysis/Path_Connected.thy --- a/src/HOL/Analysis/Path_Connected.thy Mon Mar 30 10:35:10 2020 +0200 +++ b/src/HOL/Analysis/Path_Connected.thy Tue Mar 31 15:51:15 2020 +0200 @@ -511,7 +511,7 @@ } note ** = this show ?thesis using assms - apply (simp add: arc_def simple_path_def path_join, clarify) + apply (simp add: arc_def simple_path_def, clarify) apply (simp add: joinpaths_def split: if_split_asm) apply (force dest: inj_onD [OF injg1]) apply (metis *) diff -r 2e8f861d21d4 -r 07bec530f02e src/HOL/Analysis/Polytope.thy --- a/src/HOL/Analysis/Polytope.thy Mon Mar 30 10:35:10 2020 +0200 +++ b/src/HOL/Analysis/Polytope.thy Tue Mar 31 15:51:15 2020 +0200 @@ -994,13 +994,13 @@ "a \ 0 \ {x. a \ x = b} facet_of {x. a \ x \ b}" unfolding facet_of_def hyperplane_eq_empty by (auto simp: hyperplane_face_of_halfspace_ge hyperplane_face_of_halfspace_le - DIM_positive Suc_leI of_nat_diff aff_dim_halfspace_le) + Suc_leI of_nat_diff aff_dim_halfspace_le) lemma hyperplane_facet_of_halfspace_ge: "a \ 0 \ {x. a \ x = b} facet_of {x. a \ x \ b}" unfolding facet_of_def hyperplane_eq_empty by (auto simp: hyperplane_face_of_halfspace_le hyperplane_face_of_halfspace_ge - DIM_positive Suc_leI of_nat_diff aff_dim_halfspace_ge) + Suc_leI of_nat_diff aff_dim_halfspace_ge) lemma facet_of_halfspace_le: "F facet_of {x. a \ x \ b} \ a \ 0 \ F = {x. a \ x = b}" @@ -1316,7 +1316,7 @@ apply (rule_tac x="u/x" in exI) apply (rule_tac x="v/x" in exI) apply (rule_tac x="w/x" in exI) - using x apply (auto simp: algebra_simps field_split_simps) + using x apply (auto simp: field_split_simps) done ultimately show ?thesis by force qed @@ -1445,14 +1445,14 @@ have "x = (((1 - v) * ub) *\<^sub>R b + (v * uc) *\<^sub>R c) /\<^sub>R ux" by (metis \ux \ 0\ uxx mult.commute right_inverse scaleR_one scaleR_scaleR) also have "... = (1 - v * uc / ux) *\<^sub>R b + (v * uc / ux) *\<^sub>R c" - using \ux \ 0\ equx apply (auto simp: algebra_simps field_split_simps) + using \ux \ 0\ equx apply (auto simp: field_split_simps) by (metis add.commute add_diff_eq add_divide_distrib diff_add_cancel scaleR_add_left) finally have "x = (1 - v * uc / ux) *\<^sub>R b + (v * uc / ux) *\<^sub>R c" . then have "x \ open_segment b c" apply (simp add: in_segment \b \ c\) apply (rule_tac x="(v * uc) / ux" in exI) using \0 \ ux\ \ux \ 0\ \0 < uc\ \0 < v\ \0 < ub\ \v < 1\ equx - apply (force simp: algebra_simps field_split_simps) + apply (force simp: field_split_simps) done then show ?thesis by (rule face_ofD [OF F _ b c \x \ F\]) @@ -2116,7 +2116,7 @@ done then show ?thesis using \0 < inff\ awlt [OF that] mult_strict_left_mono - by (fastforce simp add: algebra_simps field_split_simps split: if_split_asm) + by (fastforce simp add: field_split_simps split: if_split_asm) next case False with \0 < inff\ have "inff * (a j \ y - a j \ w) \ 0" diff -r 2e8f861d21d4 -r 07bec530f02e src/HOL/Analysis/Product_Topology.thy --- a/src/HOL/Analysis/Product_Topology.thy Mon Mar 30 10:35:10 2020 +0200 +++ b/src/HOL/Analysis/Product_Topology.thy Tue Mar 31 15:51:15 2020 +0200 @@ -290,7 +290,7 @@ next case False then show ?thesis - by (simp add: continuous_compose_quotient_map_eq quotient_map_fst) + by (simp add: continuous_compose_quotient_map_eq) qed lemma continuous_map_of_snd: @@ -302,7 +302,7 @@ next case False then show ?thesis - by (simp add: continuous_compose_quotient_map_eq quotient_map_snd) + by (simp add: continuous_compose_quotient_map_eq) qed lemma continuous_map_prod_top: diff -r 2e8f861d21d4 -r 07bec530f02e src/HOL/Analysis/Regularity.thy --- a/src/HOL/Analysis/Regularity.thy Mon Mar 30 10:35:10 2020 +0200 +++ b/src/HOL/Analysis/Regularity.thy Tue Mar 31 15:51:15 2020 +0200 @@ -53,7 +53,7 @@ hence "1/n > 0" "e * 2 powr - n > 0" by (auto) from M_space[OF \1/n>0\] have "(\k. measure M (\i\{0..k}. cball (from_nat_into X i) (1/real n))) \ measure M (space M)" - unfolding emeasure_eq_measure by (auto simp: measure_nonneg) + unfolding emeasure_eq_measure by (auto) from metric_LIMSEQ_D[OF this \0 < e * 2 powr -n\] obtain k where "dist (measure M (\i\{0..k}. cball (from_nat_into X i) (1/real n))) (measure M (space M)) < e * 2 powr -n" @@ -95,7 +95,7 @@ also have "\ \ (\n. emeasure M (space M - B n))" by (rule emeasure_subadditive_countably) (auto simp: summable_def) also have "\ \ (\n. ennreal (e*2 powr - real (Suc n)))" - using B_compl_le by (intro suminf_le) (simp_all add: measure_nonneg emeasure_eq_measure ennreal_leI) + using B_compl_le by (intro suminf_le) (simp_all add: emeasure_eq_measure ennreal_leI) also have "\ \ (\n. ennreal (e * (1 / 2) ^ Suc n))" by (simp add: powr_minus powr_realpow field_simps del: of_nat_Suc) also have "\ = ennreal e * (\n. ennreal ((1 / 2) ^ Suc n))" @@ -268,7 +268,7 @@ also have "(\n. \i (\i. M (D i))" by (intro summable_LIMSEQ) auto finally have measure_LIMSEQ: "(\n. \i measure M (\i. D i)" - by (simp add: emeasure_eq_measure measure_nonneg sum_nonneg) + by (simp add: emeasure_eq_measure sum_nonneg) have "(\i. D i) \ sets M" using \range D \ sets M\ by auto case 1 @@ -282,12 +282,12 @@ then obtain n0 where n0: "\(\ii. D i)\ < e/2" unfolding choice_iff by blast have "ennreal (\ii \ (\i. M (D i))" by (rule sum_le_suminf) auto also have "\ = M (\i. D i)" by (simp add: M) also have "\ = measure M (\i. D i)" by (simp add: emeasure_eq_measure) finally have n0: "measure M (\i. D i) - (\ii. \K. K \ D i \ compact K \ emeasure M (D i) \ emeasure M K + e/(2*Suc n0)" proof fix i @@ -351,7 +351,7 @@ have "ennreal (measure M ?U - measure M (\i. D i)) = M ?U - M (\i. D i)" using U(1,2) by (subst ennreal_minus[symmetric]) - (auto intro!: finite_measure_mono simp: sb measure_nonneg emeasure_eq_measure) + (auto intro!: finite_measure_mono simp: sb emeasure_eq_measure) also have "\ = M (?U - (\i. D i))" using U \(\i. D i) \ sets M\ by (subst emeasure_Diff) (auto simp: sb) also have "\ \ M (\i. U i - D i)" using U \range D \ sets M\ @@ -361,7 +361,7 @@ also have "\ \ (\i. ennreal e/(2 powr Suc i))" using U \range D \ sets M\ using \0 by (intro suminf_le, subst emeasure_Diff) - (auto simp: emeasure_Diff emeasure_eq_measure sb measure_nonneg ennreal_minus + (auto simp: emeasure_Diff emeasure_eq_measure sb ennreal_minus finite_measure_mono divide_ennreal ennreal_less_iff intro: less_imp_le) also have "\ \ (\n. ennreal (e * (1 / 2) ^ Suc n))" diff -r 2e8f861d21d4 -r 07bec530f02e src/HOL/Analysis/Simplex_Content.thy --- a/src/HOL/Analysis/Simplex_Content.thy Mon Mar 30 10:35:10 2020 +0200 +++ b/src/HOL/Analysis/Simplex_Content.thy Tue Mar 31 15:51:15 2020 +0200 @@ -252,7 +252,7 @@ ((a + b + c) - 2 * c)" unfolding power2_eq_square by (simp add: s_def a_def b_def c_def algebra_simps) also have "\ = 16 * s * (s - a) * (s - b) * (s - c)" - by (simp add: s_def field_split_simps mult_ac) + by (simp add: s_def field_split_simps) finally have "content (convex hull {A, B, C}) ^ 2 = s * (s - a) * (s - b) * (s - c)" by simp also have "\ = sqrt (s * (s - a) * (s - b) * (s - c)) ^ 2" diff -r 2e8f861d21d4 -r 07bec530f02e src/HOL/Analysis/Starlike.thy --- a/src/HOL/Analysis/Starlike.thy Mon Mar 30 10:35:10 2020 +0200 +++ b/src/HOL/Analysis/Starlike.thy Tue Mar 31 15:51:15 2020 +0200 @@ -5199,7 +5199,7 @@ using \T \ S\ apply (auto simp: \a \ S\ cc0) done also have "... = c a + (1 - c a)" - by (metis \a \ S\ fun_upd_other sum.cong sumSS') + by (metis \a \ S\ fun_upd_other sum.cong sumSS'(1)) finally show "sum (cc(a := c a)) (insert a (T \ T')) = 1" by simp have "(\x\insert a (T \ T'). (cc(a := c a)) x *\<^sub>R x) = c a *\<^sub>R a + (\x \ T \ T'. (cc(a := c a)) x *\<^sub>R x)" diff -r 2e8f861d21d4 -r 07bec530f02e src/HOL/Analysis/Summation_Tests.thy --- a/src/HOL/Analysis/Summation_Tests.thy Mon Mar 30 10:35:10 2020 +0200 +++ b/src/HOL/Analysis/Summation_Tests.thy Tue Mar 31 15:51:15 2020 +0200 @@ -149,7 +149,7 @@ also have "Discrete.log k = n" if "k \ {2^n..<2^Suc n}" for k using that by (intro Discrete.log_eqI) simp_all hence "(\k = 2^n..<2^Suc n. f (2^Discrete.log k)) = (\(_::nat) = 2^n..<2^Suc n. f (2^n))" by (intro sum.cong) simp_all - also have "\ = 2^n * f (2^n)" by (simp add: of_nat_power) + also have "\ = 2^n * f (2^n)" by (simp) finally show ?case by simp qed simp @@ -163,7 +163,7 @@ also have "Discrete.log k = n" if "k \ {2^n..<2^Suc n}" for k using that by (intro Discrete.log_eqI) simp_all hence "(\k = 2^n..<2^Suc n. f (2*2^Discrete.log k)) = (\(_::nat) = 2^n..<2^Suc n. f (2^Suc n))" by (intro sum.cong) simp_all - also have "\ = 2^n * f (2^Suc n)" by (simp add: of_nat_power) + also have "\ = 2^n * f (2^Suc n)" by (simp) finally show ?case by simp qed simp diff -r 2e8f861d21d4 -r 07bec530f02e src/HOL/Analysis/Tagged_Division.thy --- a/src/HOL/Analysis/Tagged_Division.thy Mon Mar 30 10:35:10 2020 +0200 +++ b/src/HOL/Analysis/Tagged_Division.thy Tue Mar 31 15:51:15 2020 +0200 @@ -2447,7 +2447,7 @@ finally show "a \ i + real ?k * (b \ i - a \ i) / 2 ^ n \ x \ i" . next have "x \ i \ a \ i + (2 ^ n * (x \ i - a \ i) / (b \ i - a \ i)) * (b \ i - a \ i) / 2 ^ n" - using abi_less by (simp add: field_split_simps algebra_simps) + using abi_less by (simp add: field_split_simps) also have "... \ a \ i + (real ?k + 1) * (b \ i - a \ i) / 2 ^ n" apply (intro add_left_mono mult_right_mono divide_right_mono of_nat_floor) using aibi [OF \i \ Basis\] xab @@ -2488,12 +2488,12 @@ proof - have dd: "w / m \ v / n \ (v+1) / n \ (w+1) / m \ inverse n \ inverse m" for w m v n::real - by (auto simp: field_split_simps algebra_simps) + by (auto simp: field_split_simps) have bjaj: "b \ j - a \ j > 0" using \j \ Basis\ \box a b \ {}\ box_eq_empty(1) by fastforce have "((g j) / 2 ^ m) * (b \ j - a \ j) \ ((f j) / 2 ^ n) * (b \ j - a \ j) \ (((f j) + 1) / 2 ^ n) * (b \ j - a \ j) \ (((g j) + 1) / 2 ^ m) * (b \ j - a \ j)" - using that \j \ Basis\ by (simp add: subset_box algebra_simps field_split_simps aibi) + using that \j \ Basis\ by (simp add: subset_box field_split_simps aibi) then have "((g j) / 2 ^ m) \ ((f j) / 2 ^ n) \ ((real(f j) + 1) / 2 ^ n) \ ((real(g j) + 1) / 2 ^ m)" by (metis bjaj mult.commute of_nat_1 of_nat_add real_mult_le_cancel_iff2) diff -r 2e8f861d21d4 -r 07bec530f02e src/HOL/Analysis/Weierstrass_Theorems.thy --- a/src/HOL/Analysis/Weierstrass_Theorems.thy Mon Mar 30 10:35:10 2020 +0200 +++ b/src/HOL/Analysis/Weierstrass_Theorems.thy Tue Mar 31 15:51:15 2020 +0200 @@ -110,7 +110,7 @@ then have "(\k\n. (k - n * x)\<^sup>2 * Bernstein n k x)/n^2 = x * (1 - x) / n" by (simp add: power2_eq_square) then show ?thesis - using n by (simp add: sum_divide_distrib field_split_simps mult.commute power2_commute) + using n by (simp add: sum_divide_distrib field_split_simps power2_commute) qed { fix k assume k: "k \ n" @@ -158,7 +158,7 @@ also have "... < e" apply (simp add: field_simps) using \d>0\ nbig e \n>0\ - apply (simp add: field_split_simps algebra_simps) + apply (simp add: field_split_simps) using ed0 by linarith finally have "\f x - (\k\n. f (real k / real n) * Bernstein n k x)\ < e" . } @@ -576,7 +576,7 @@ define B where "B j = {x \ S. f x \ (j + 1/3)*e}" for j :: nat have ngt: "(n-1) * e \ normf f" "n\1" using e - apply (simp_all add: n_def field_simps of_nat_Suc) + apply (simp_all add: n_def field_simps) by (metis real_nat_ceiling_ge mult.commute not_less pos_less_divide_eq) then have ge_fx: "(n-1) * e \ f x" if "x \ S" for x using f normf_upper that by fastforce @@ -646,7 +646,7 @@ then have "t \ B i" using Anj e ge_fx [OF t] \1 \ n\ fpos [OF t] t apply (simp add: A_def B_def) - apply (clarsimp simp add: field_simps of_nat_diff not_le of_nat_Suc) + apply (clarsimp simp add: field_simps of_nat_diff not_le) apply (rule order_trans [of _ "e * 2 + (e * (real d * 3) + e * (real i * 3))"]) apply auto done @@ -693,7 +693,7 @@ apply simp apply (rule order_trans [OF _ sum_bounded_below [OF less_imp_le [OF ****]]]) using True - apply (simp_all add: of_nat_Suc of_nat_diff) + apply (simp_all add: of_nat_diff) done also have "... \ g t" using jn e @@ -744,7 +744,7 @@ have "\ real (Suc n) < inverse e" using \N \ n\ N using less_imp_inverse_less by force then have "1 / (1 + real n) \ e" - using e by (simp add: field_simps of_nat_Suc) + using e by (simp add: field_simps) then have "\f x - g x\ < e" using n(2) x by auto } note * = this @@ -927,7 +927,7 @@ show ?case apply (rule_tac x="\i. c" in exI) apply (rule_tac x=0 in exI) - apply (auto simp: mult_ac of_nat_Suc) + apply (auto simp: mult_ac) done case (add f1 f2) then obtain a1 n1 a2 n2 where @@ -1328,7 +1328,7 @@ also have "... = (\j\B. if j = i then x \ i else 0)" by (rule sum.cong; simp) also have "... = i \ x" - by (simp add: \finite B\ that inner_commute sum.delta) + by (simp add: \finite B\ that inner_commute) finally show ?thesis . qed qed