# HG changeset patch # User huffman # Date 1214874840 -7200 # Node ID 07e04ab0177a82df5ae02754ce8f712c54c9e1ff # Parent be852e06d546d4321640e93d6ac202edd481534c remove unused lemmas ub2ub_monofun' and dir2dir_monofun diff -r be852e06d546 -r 07e04ab0177a src/HOLCF/Cont.thy --- a/src/HOLCF/Cont.thy Tue Jul 01 03:12:39 2008 +0200 +++ b/src/HOLCF/Cont.thy Tue Jul 01 03:14:00 2008 +0200 @@ -76,36 +76,6 @@ apply (erule ub_rangeD) done -lemma ub2ub_monofun': - "\monofun f; S <| u\ \ f ` S <| f u" -apply (rule ub_imageI) -apply (erule monofunE) -apply (erule (1) is_ubD) -done - -text {* monotone functions map directed sets to directed sets *} - -lemma dir2dir_monofun: - assumes f: "monofun f" - assumes S: "directed S" - shows "directed (f ` S)" -proof (rule directedI) - from directedD1 [OF S] - obtain x where "x \ S" .. - hence "f x \ f ` S" by simp - thus "\x. x \ f ` S" .. -next - fix x assume "x \ f ` S" - then obtain a where x: "x = f a" and a: "a \ S" .. - fix y assume "y \ f ` S" - then obtain b where y: "y = f b" and b: "b \ S" .. - from directedD2 [OF S a b] - obtain c where "c \ S" and "a \ c \ b \ c" .. - hence "f c \ f ` S" and "x \ f c \ y \ f c" - using monofunE [OF f] x y by simp_all - thus "\z\f ` S. x \ z \ y \ z" .. -qed - text {* left to right: @{prop "monofun f \ contlub f \ cont f"} *} lemma monocontlub2cont: "\monofun f; contlub f\ \ cont f"