# HG changeset patch # User huffman # Date 1215021177 -7200 # Node ID 0829a2c4b287b786ae362124caa163c9e7a7813a # Parent a487aa8925405c495fa7b6f8c6c171c8edb9d324 section -> subsection diff -r a487aa892540 -r 0829a2c4b287 src/HOL/Complex/Fundamental_Theorem_Algebra.thy --- a/src/HOL/Complex/Fundamental_Theorem_Algebra.thy Wed Jul 02 19:52:38 2008 +0200 +++ b/src/HOL/Complex/Fundamental_Theorem_Algebra.thy Wed Jul 02 19:52:57 2008 +0200 @@ -9,7 +9,7 @@ imports Univ_Poly Dense_Linear_Order Complex begin -section {* Square root of complex numbers *} +subsection {* Square root of complex numbers *} definition csqrt :: "complex \ complex" where "csqrt z = (if Im z = 0 then if 0 \ Re z then Complex (sqrt(Re z)) 0 @@ -56,7 +56,7 @@ qed -section{* More lemmas about module of complex numbers *} +subsection{* More lemmas about module of complex numbers *} lemma complex_of_real_power: "complex_of_real x ^ n = complex_of_real (x^n)" by (induct n, auto) @@ -108,7 +108,7 @@ lemma complex_mod_triangle_sub: "cmod w \ cmod (w + z) + norm z" using complex_mod_triangle_ineq2[of "w + z" "-z"] by auto -section{* Basic lemmas about complex polynomials *} +subsection{* Basic lemmas about complex polynomials *} lemma poly_bound_exists: shows "\m. m > 0 \ (\z. cmod z <= r \ cmod (poly p z) \ m)" @@ -196,7 +196,7 @@ qed -section{* Some theorems about Sequences*} +subsection{* Some theorems about Sequences*} text{* Given a binary function @{text "f:: nat \ 'a \ 'a"}, its values are uniquely determined by a function g *} lemma num_Axiom: "EX! g. g 0 = e \ (\n. g (Suc n) = f n (g n))" @@ -360,7 +360,7 @@ thus ?case by arith qed -section {* Fundamental theorem of algebra *} +subsection {* Fundamental theorem of algebra *} lemma unimodular_reduce_norm: assumes md: "cmod z = 1" shows "cmod (z + 1) < 1 \ cmod (z - 1) < 1 \ cmod (z + ii) < 1 \ cmod (z - ii) < 1" @@ -984,7 +984,7 @@ ultimately show ?case by blast qed simp -section{* Nullstellenstatz, degrees and divisibility of polynomials *} +subsection{* Nullstellenstatz, degrees and divisibility of polynomials *} lemma nullstellensatz_lemma: fixes p :: "complex list"