# HG changeset patch # User huffman # Date 1269797642 25200 # Node ID 095b1022e2ae8a54781b1125548322ad8e06abfa # Parent f4f34350024925abf2672fca574066317605dbae cleaned up some proofs diff -r f4f343500249 -r 095b1022e2ae src/HOL/SupInf.thy --- a/src/HOL/SupInf.thy Sun Mar 28 17:43:09 2010 +0200 +++ b/src/HOL/SupInf.thy Sun Mar 28 10:34:02 2010 -0700 @@ -106,10 +106,10 @@ proof (cases "Sup X \ a") case True thus ?thesis - apply (simp add: max_def) + apply (simp add: max_def) apply (rule Sup_eq_maximum) - apply (metis insertCI) - apply (metis Sup_upper insertE le_iff_sup real_le_linear real_le_trans sup_absorb1 z) + apply (rule insertI1) + apply (metis Sup_upper [OF _ z] insertE real_le_linear real_le_trans) done next case False @@ -177,7 +177,7 @@ fixes S :: "real set" assumes fS: "finite S" and Se: "S \ {}" shows "a \ Sup S \ (\ x \ S. a \ x)" -by (metis Max_ge Se Sup_finite_Max Sup_finite_in fS le_iff_sup real_le_trans) +by (metis Max_ge Se Sup_finite_Max Sup_finite_in fS real_le_trans) lemma Sup_finite_gt_iff: fixes S :: "real set" @@ -331,8 +331,8 @@ have "Inf (insert a X) \ Inf X" apply (rule Inf_greatest) apply (metis empty_psubset_nonempty psubset_eq x) - apply (rule Inf_lower_EX) - apply (blast intro: elim:) + apply (rule Inf_lower_EX) + apply (erule insertI2) apply (metis insert_iff real_le_linear real_le_refl real_le_trans z) done moreover