# HG changeset patch # User paulson # Date 1524082370 -3600 # Node ID 0a2a1b6507c17b76786908356c451c7f93ca80a0 # Parent 40b790c5a11d9b7a89d1bdb95f280b5bec5dbb30 correction of TeX errors and other oversights diff -r 40b790c5a11d -r 0a2a1b6507c1 src/HOL/Analysis/Change_Of_Vars.thy --- a/src/HOL/Analysis/Change_Of_Vars.thy Wed Apr 18 18:46:51 2018 +0100 +++ b/src/HOL/Analysis/Change_Of_Vars.thy Wed Apr 18 21:12:50 2018 +0100 @@ -346,7 +346,6 @@ qed - proposition fixes S :: "(real^'n) set" assumes "S \ lmeasurable" @@ -451,7 +450,6 @@ qed - proposition fixes f :: "real^'n::{finite,wellorder} \ real^'n::_" assumes "linear f" "S \ lmeasurable" @@ -1813,7 +1811,7 @@ using \r > 0\ \d > 0\ by auto show "{x' \ S. \v. v \ 0 \ (\\>0. \e>0. \z\S - {x'}. norm (x' - z) < e \ \v \ (z - x')\ < \ * norm (x' - z))} \ ball x (min d r) \ ?W" proof (clarsimp simp: dist_norm norm_minus_commute) - fix y w + fix y w assume "y \ S" "w \ 0" and less [rule_format]: "\\>0. \e>0. \z\S - {y}. norm (y - z) < e \ \w \ (z - y)\ < \ * norm (y - z)" @@ -2288,8 +2286,8 @@ unfolding det_def by (intro measurable) (auto intro: f borel_measurable_partial_derivatives [OF S]) -text\The localisation wrt S uses the same argument for many similar results. -See HOL Light's MEASURABLE_ON_LEBESGUE_MEASURABLE_PREIMAGE_BOREL, etc.\ +text\The localisation wrt S uses the same argument for many similar results.\ +(*See HOL Light's MEASURABLE_ON_LEBESGUE_MEASURABLE_PREIMAGE_BOREL, etc.*) lemma borel_measurable_lebesgue_on_preimage_borel: fixes f :: "'a::euclidean_space \ 'b::euclidean_space" assumes "S \ sets lebesgue" @@ -2370,27 +2368,6 @@ qed - -thm integrable_on_subcbox - -proposition measurable_bounded_by_integrable_imp_integrable: - fixes f :: "'a::euclidean_space \ 'b::euclidean_space" - assumes f: "f \ borel_measurable (lebesgue_on S)" and g: "g integrable_on S" - and normf: "\x. x \ S \ norm(f x) \ g x" and S: "S \ sets lebesgue" - shows "f integrable_on S" -proof (rule integrable_on_all_intervals_integrable_bound [OF _ normf g]) - show "(\x. if x \ S then f x else 0) integrable_on cbox a b" for a b - proof (rule measurable_bounded_lemma) - show "(\x. if x \ S then f x else 0) \ borel_measurable lebesgue" - by (simp add: S borel_measurable_UNIV f) - show "(\x. if x \ S then g x else 0) integrable_on cbox a b" - by (simp add: g integrable_altD(1)) - show "norm (if x \ S then f x else 0) \ (if x \ S then g x else 0)" for x - using normf by simp - qed -qed - - subsection\Simplest case of Sard's theorem (we don't need continuity of derivative)\ lemma Sard_lemma00: @@ -2428,7 +2405,7 @@ qed blast qed -text\As above, but reorienting the vector (HOL Light's @text{GEOM_BASIS_MULTIPLE_TAC})\ +text\As above, but reorienting the vector (HOL Light's @text{GEOM\_BASIS\_MULTIPLE\_TAC})\ lemma Sard_lemma0: fixes P :: "(real^'n::{finite,wellorder}) set" assumes "a \ 0" @@ -2487,7 +2464,7 @@ qed qed -(*As above, but translating the sets (HOL Light's GEN_GEOM_ORIGIN_TAC)*) +text\As above, but translating the sets (HOL Light's @text{GEN\_GEOM\_ORIGIN\_TAC})\ lemma Sard_lemma1: fixes P :: "(real^'n::{finite,wellorder}) set" assumes P: "dim P < CARD('n)" and "0 \ m" "0 \ e" @@ -3073,7 +3050,6 @@ qed - lemma absolutely_integrable_on_image_real: fixes f :: "real^'n::{finite,wellorder} \ real" and g :: "real^'n::_ \ real^'n::_" assumes der_g: "\x. x \ S \ (g has_derivative g' x) (at x within S)" @@ -3166,7 +3142,6 @@ using integral_on_image_ubound_nonneg [OF assms] by simp - subsection\Change-of-variables theorem\ text\The classic change-of-variables theorem. We have two versions with quite general hypotheses,