# HG changeset patch # User paulson # Date 1020841696 -7200 # Node ID 0a6fbdedcde2013224bc8ccbb1c6b40a7a456982 # Parent f2b00262bdfc2928e3f1e7c9ce8b09a75f1d732f Tidied and converted to Isar by lcp diff -r f2b00262bdfc -r 0a6fbdedcde2 src/HOL/ex/Tarski.thy --- a/src/HOL/ex/Tarski.thy Tue May 07 19:54:29 2002 +0200 +++ b/src/HOL/ex/Tarski.thy Wed May 08 09:08:16 2002 +0200 @@ -7,17 +7,18 @@ The fixedpoints of a complete lattice themselves form a complete lattice. Illustrates first-class theories, using the Sigma representation of structures + +Tidied and converted to Isar by lcp *) -Tarski = Main + - +theory Tarski = Main: record 'a potype = pset :: "'a set" order :: "('a * 'a) set" syntax - "@pset" :: "'a potype => 'a set" ("_ ." [90] 90) + "@pset" :: "'a potype => 'a set" ("_ ." [90] 90) "@order" :: "'a potype => ('a *'a)set" ("_ ." [90] 90) translations @@ -26,31 +27,31 @@ constdefs monotone :: "['a => 'a, 'a set, ('a *'a)set] => bool" - "monotone f A r == ! x: A. ! y: A. (x, y): r --> ((f x), (f y)) : r" + "monotone f A r == \x\A. \y\A. (x, y): r --> ((f x), (f y)) : r" least :: "['a => bool, 'a potype] => 'a" "least P po == @ x. x: po. & P x & - (! y: po.. P y --> (x,y): po.)" + (\y \ po.. P y --> (x,y): po.)" greatest :: "['a => bool, 'a potype] => 'a" "greatest P po == @ x. x: po. & P x & - (! y: po.. P y --> (y,x): po.)" + (\y \ po.. P y --> (y,x): po.)" lub :: "['a set, 'a potype] => 'a" - "lub S po == least (%x. ! y: S. (y,x): po.) po" + "lub S po == least (%x. \y\S. (y,x): po.) po" glb :: "['a set, 'a potype] => 'a" - "glb S po == greatest (%x. ! y: S. (x,y): po.) po" + "glb S po == greatest (%x. \y\S. (x,y): po.) po" - islub :: "['a set, 'a potype, 'a] => bool" - "islub S po == %L. (L: po. & (! y: S. (y,L): po.) & - (! z:po.. (! y: S. (y,z): po.) --> (L,z): po.))" + isLub :: "['a set, 'a potype, 'a] => bool" + "isLub S po == %L. (L: po. & (\y\S. (y,L): po.) & + (\z\po.. (\y\S. (y,z): po.) --> (L,z): po.))" - isglb :: "['a set, 'a potype, 'a] => bool" - "isglb S po == %G. (G: po. & (! y: S. (G,y): po.) & - (! z: po.. (! y: S. (z,y): po.) --> (z,G): po.))" + isGlb :: "['a set, 'a potype, 'a] => bool" + "isGlb S po == %G. (G: po. & (\y\S. (G,y): po.) & + (\z \ po.. (\y\S. (z,y): po.) --> (z,G): po.))" - fix :: "[('a => 'a), 'a set] => 'a set" + "fix" :: "[('a => 'a), 'a set] => 'a set" "fix f A == {x. x: A & f x = x}" interval :: "[('a*'a) set,'a, 'a ] => 'a set" @@ -70,8 +71,8 @@ CompleteLattice :: "('a potype) set" "CompleteLattice == {cl. cl: PartialOrder & - (! S. S <= cl. --> (? L. islub S cl L)) & - (! S. S <= cl. --> (? G. isglb S cl G))}" + (\S. S <= cl. --> (\L. isLub S cl L)) & + (\S. S <= cl. --> (\G. isGlb S cl G))}" CLF :: "('a potype * ('a => 'a)) set" "CLF == SIGMA cl: CompleteLattice. @@ -101,41 +102,796 @@ "dual po == (| pset = po., order = converse (po.) |)" locale PO = -fixes - cl :: "'a potype" - A :: "'a set" - r :: "('a * 'a) set" -assumes - cl_po "cl : PartialOrder" -defines - A_def "A == cl." - r_def "r == cl." + fixes cl :: "'a potype" + and A :: "'a set" + and r :: "('a * 'a) set" + assumes cl_po: "cl : PartialOrder" + defines A_def: "A == cl." + and r_def: "r == cl." locale CL = PO + -fixes -assumes - cl_co "cl : CompleteLattice" + assumes cl_co: "cl : CompleteLattice" locale CLF = CL + -fixes - f :: "'a => 'a" - P :: "'a set" -assumes - f_cl "f : CLF``{cl}" -defines - P_def "P == fix f A" + fixes f :: "'a => 'a" + and P :: "'a set" + assumes f_cl: "(cl,f) : CLF" (*was the equivalent "f : CLF``{cl}"*) + defines P_def: "P == fix f A" locale Tarski = CLF + -fixes - Y :: "'a set" - intY1 :: "'a set" - v :: "'a" -assumes - Y_ss "Y <= P" -defines - intY1_def "intY1 == interval r (lub Y cl) (Top cl)" - v_def "v == glb {x. ((%x: intY1. f x) x, x): induced intY1 r & x: intY1} - (| pset=intY1, order=induced intY1 r|)" + fixes Y :: "'a set" + and intY1 :: "'a set" + and v :: "'a" + assumes + Y_ss: "Y <= P" + defines + intY1_def: "intY1 == interval r (lub Y cl) (Top cl)" + and v_def: "v == glb {x. ((%x: intY1. f x) x, x): induced intY1 r & + x: intY1} + (| pset=intY1, order=induced intY1 r|)" + + + +(* Partial Order *) + +lemma (in PO) PO_imp_refl: "refl A r" +apply (insert cl_po) +apply (simp add: PartialOrder_def A_def r_def) +done + +lemma (in PO) PO_imp_sym: "antisym r" +apply (insert cl_po) +apply (simp add: PartialOrder_def A_def r_def) +done + +lemma (in PO) PO_imp_trans: "trans r" +apply (insert cl_po) +apply (simp add: PartialOrder_def A_def r_def) +done + +lemma (in PO) reflE: "[| refl A r; x \ A|] ==> (x, x) \ r" +apply (insert cl_po) +apply (simp add: PartialOrder_def refl_def) +done + +lemma (in PO) antisymE: "[| antisym r; (a, b) \ r; (b, a) \ r |] ==> a = b" +apply (insert cl_po) +apply (simp add: PartialOrder_def antisym_def) +done + +lemma (in PO) transE: "[| trans r; (a, b) \ r; (b, c) \ r|] ==> (a,c) \ r" +apply (insert cl_po) +apply (simp add: PartialOrder_def) +apply (unfold trans_def, fast) +done + +lemma (in PO) monotoneE: + "[| monotone f A r; x \ A; y \ A; (x, y) \ r |] ==> (f x, f y) \ r" +by (simp add: monotone_def) + +lemma (in PO) po_subset_po: + "S <= A ==> (| pset = S, order = induced S r |) \ PartialOrder" +apply (simp (no_asm) add: PartialOrder_def) +apply auto +(* refl *) +apply (simp add: refl_def induced_def) +apply (blast intro: PO_imp_refl [THEN reflE]) +(* antisym *) +apply (simp add: antisym_def induced_def) +apply (blast intro: PO_imp_sym [THEN antisymE]) +(* trans *) +apply (simp add: trans_def induced_def) +apply (blast intro: PO_imp_trans [THEN transE]) +done + +lemma (in PO) indE: "[| (x, y) \ induced S r; S <= A |] ==> (x, y) \ r" +by (simp add: add: induced_def) + +lemma (in PO) indI: "[| (x, y) \ r; x \ S; y \ S |] ==> (x, y) \ induced S r" +by (simp add: add: induced_def) + +lemma (in CL) CL_imp_ex_isLub: "S <= A ==> \L. isLub S cl L" +apply (insert cl_co) +apply (simp add: CompleteLattice_def A_def) +done + +declare (in CL) cl_co [simp] + +lemma isLub_lub: "(\L. isLub S cl L) = isLub S cl (lub S cl)" +by (simp add: lub_def least_def isLub_def some_eq_ex [symmetric]) + +lemma isGlb_glb: "(\G. isGlb S cl G) = isGlb S cl (glb S cl)" +by (simp add: glb_def greatest_def isGlb_def some_eq_ex [symmetric]) + +lemma isGlb_dual_isLub: "isGlb S cl = isLub S (dual cl)" +by (simp add: isLub_def isGlb_def dual_def converse_def) + +lemma isLub_dual_isGlb: "isLub S cl = isGlb S (dual cl)" +by (simp add: isLub_def isGlb_def dual_def converse_def) + +lemma (in PO) dualPO: "dual cl \ PartialOrder" +apply (insert cl_po) +apply (simp add: PartialOrder_def dual_def refl_converse + trans_converse antisym_converse) +done + +lemma Rdual: + "\S. (S <= A -->( \L. isLub S (| pset = A, order = r|) L)) + ==> \S. (S <= A --> (\G. isGlb S (| pset = A, order = r|) G))" +apply safe +apply (rule_tac x = "lub {y. y \ A & (\k \ S. (y, k) \ r)} + (|pset = A, order = r|) " in exI) +apply (drule_tac x = "{y. y \ A & (\k \ S. (y,k) \ r) }" in spec) +apply (drule mp, fast) +apply (simp add: isLub_lub isGlb_def) +apply (simp add: isLub_def, blast) +done + +lemma lub_dual_glb: "lub S cl = glb S (dual cl)" +by (simp add: lub_def glb_def least_def greatest_def dual_def converse_def) + +lemma glb_dual_lub: "glb S cl = lub S (dual cl)" +by (simp add: lub_def glb_def least_def greatest_def dual_def converse_def) + +lemma CL_subset_PO: "CompleteLattice <= PartialOrder" +by (simp add: PartialOrder_def CompleteLattice_def, fast) + +lemmas CL_imp_PO = CL_subset_PO [THEN subsetD] + +declare CL_imp_PO [THEN Tarski.PO_imp_refl, simp] +declare CL_imp_PO [THEN Tarski.PO_imp_sym, simp] +declare CL_imp_PO [THEN Tarski.PO_imp_trans, simp] + +lemma (in CL) CO_refl: "refl A r" +by (rule PO_imp_refl) + +lemma (in CL) CO_antisym: "antisym r" +by (rule PO_imp_sym) + +lemma (in CL) CO_trans: "trans r" +by (rule PO_imp_trans) + +lemma CompleteLatticeI: + "[| po \ PartialOrder; (\S. S <= po. --> (\L. isLub S po L)); + (\S. S <= po. --> (\G. isGlb S po G))|] + ==> po \ CompleteLattice" +apply (unfold CompleteLattice_def, blast) +done + +lemma (in CL) CL_dualCL: "dual cl \ CompleteLattice" +apply (insert cl_co) +apply (simp add: CompleteLattice_def dual_def) +apply (fold dual_def) +apply (simp add: isLub_dual_isGlb [symmetric] isGlb_dual_isLub [symmetric] + dualPO) +done + +lemma (in PO) dualA_iff: "(dual cl.) = cl." +by (simp add: dual_def) + +lemma (in PO) dualr_iff: "((x, y) \ (dual cl.)) = ((y, x) \ cl.)" +by (simp add: dual_def) + +lemma (in PO) monotone_dual: + "monotone f (cl.) (cl.) ==> monotone f (dual cl.) (dual cl.)" +apply (simp add: monotone_def dualA_iff dualr_iff) +done + +lemma (in PO) interval_dual: + "[| x \ A; y \ A|] ==> interval r x y = interval (dual cl.) y x" +apply (simp add: interval_def dualr_iff) +apply (fold r_def, fast) +done + +lemma (in PO) interval_not_empty: + "[| trans r; interval r a b \ {} |] ==> (a, b) \ r" +apply (simp add: interval_def) +apply (unfold trans_def, blast) +done + +lemma (in PO) interval_imp_mem: "x \ interval r a b ==> (a, x) \ r" +by (simp add: interval_def) + +lemma (in PO) left_in_interval: + "[| a \ A; b \ A; interval r a b \ {} |] ==> a \ interval r a b" +apply (simp (no_asm_simp) add: interval_def) +apply (simp add: PO_imp_trans interval_not_empty) +apply (simp add: PO_imp_refl [THEN reflE]) +done + +lemma (in PO) right_in_interval: + "[| a \ A; b \ A; interval r a b \ {} |] ==> b \ interval r a b" +apply (simp (no_asm_simp) add: interval_def) +apply (simp add: PO_imp_trans interval_not_empty) +apply (simp add: PO_imp_refl [THEN reflE]) +done + +(* sublattice *) +lemma (in PO) sublattice_imp_CL: + "S <<= cl ==> (| pset = S, order = induced S r |) \ CompleteLattice" +by (simp add: sublattice_def CompleteLattice_def A_def r_def) + +lemma (in CL) sublatticeI: + "[| S <= A; (| pset = S, order = induced S r |) \ CompleteLattice |] + ==> S <<= cl" +by (simp add: sublattice_def A_def r_def) + +(* lub *) +lemma (in CL) lub_unique: "[| S <= A; isLub S cl x; isLub S cl L|] ==> x = L" +apply (rule antisymE) +apply (rule CO_antisym) +apply (auto simp add: isLub_def r_def) +done + +lemma (in CL) lub_upper: "[|S <= A; x \ S|] ==> (x, lub S cl) \ r" +apply (rule CL_imp_ex_isLub [THEN exE], assumption) +apply (unfold lub_def least_def) +apply (rule some_equality [THEN ssubst]) + apply (simp add: isLub_def) + apply (simp add: lub_unique A_def isLub_def) +apply (simp add: isLub_def r_def) +done + +lemma (in CL) lub_least: + "[| S <= A; L \ A; \x \ S. (x,L) \ r |] ==> (lub S cl, L) \ r" +apply (rule CL_imp_ex_isLub [THEN exE], assumption) +apply (unfold lub_def least_def) +apply (rule_tac s=x in some_equality [THEN ssubst]) + apply (simp add: isLub_def) + apply (simp add: lub_unique A_def isLub_def) +apply (simp add: isLub_def r_def A_def) +done + +lemma (in CL) lub_in_lattice: "S <= A ==> lub S cl \ A" +apply (rule CL_imp_ex_isLub [THEN exE], assumption) +apply (unfold lub_def least_def) +apply (subst some_equality) +apply (simp add: isLub_def) +prefer 2 apply (simp add: isLub_def A_def) +apply (simp add: lub_unique A_def isLub_def) +done + +lemma (in CL) lubI: + "[| S <= A; L \ A; \x \ S. (x,L) \ r; + \z \ A. (\y \ S. (y,z) \ r) --> (L,z) \ r |] ==> L = lub S cl" +apply (rule lub_unique, assumption) +apply (simp add: isLub_def A_def r_def) +apply (unfold isLub_def) +apply (rule conjI) +apply (fold A_def r_def) +apply (rule lub_in_lattice, assumption) +apply (simp add: lub_upper lub_least) +done + +lemma (in CL) lubIa: "[| S <= A; isLub S cl L |] ==> L = lub S cl" +by (simp add: lubI isLub_def A_def r_def) + +lemma (in CL) isLub_in_lattice: "isLub S cl L ==> L \ A" +by (simp add: isLub_def A_def) + +lemma (in CL) isLub_upper: "[|isLub S cl L; y \ S|] ==> (y, L) \ r" +by (simp add: isLub_def r_def) + +lemma (in CL) isLub_least: + "[| isLub S cl L; z \ A; \y \ S. (y, z) \ r|] ==> (L, z) \ r" +by (simp add: isLub_def A_def r_def) + +lemma (in CL) isLubI: + "[| L \ A; \y \ S. (y, L) \ r; + (\z \ A. (\y \ S. (y, z):r) --> (L, z) \ r)|] ==> isLub S cl L" +by (simp add: isLub_def A_def r_def) + +(* glb *) +lemma (in CL) glb_in_lattice: "S <= A ==> glb S cl \ A" +apply (subst glb_dual_lub) +apply (simp add: A_def) +apply (rule dualA_iff [THEN subst]) +apply (rule Tarski.lub_in_lattice) +apply (rule dualPO) +apply (rule CL_dualCL) +apply (simp add: dualA_iff) +done + +lemma (in CL) glb_lower: "[|S <= A; x \ S|] ==> (glb S cl, x) \ r" +apply (subst glb_dual_lub) +apply (simp add: r_def) +apply (rule dualr_iff [THEN subst]) +apply (rule Tarski.lub_upper [rule_format]) +apply (rule dualPO) +apply (rule CL_dualCL) +apply (simp add: dualA_iff A_def, assumption) +done + +(* Reduce the sublattice property by using substructural properties*) +(* abandoned see Tarski_4.ML *) + +lemma (in CLF) [simp]: + "f: cl. funcset cl. & monotone f (cl.) (cl.)" +apply (insert f_cl) +apply (simp add: CLF_def) +done + +declare (in CLF) f_cl [simp] + + +lemma (in CLF) f_in_funcset: "f \ A funcset A" +by (simp add: A_def) + +lemma (in CLF) monotone_f: "monotone f A r" +by (simp add: A_def r_def) + +lemma (in CLF) CLF_dual: "(cl,f) \ CLF ==> (dual cl, f) \ CLF" +apply (simp add: CLF_def CL_dualCL monotone_dual) +apply (simp add: dualA_iff) +done + +(* fixed points *) +lemma fix_subset: "fix f A <= A" +by (simp add: fix_def, fast) + +lemma fix_imp_eq: "x \ fix f A ==> f x = x" +by (simp add: fix_def) + +lemma fixf_subset: + "[| A <= B; x \ fix (%y: A. f y) A |] ==> x \ fix f B" +apply (simp add: fix_def, auto) +done + +(* lemmas for Tarski, lub *) +lemma (in CLF) lubH_le_flubH: + "H = {x. (x, f x) \ r & x \ A} ==> (lub H cl, f (lub H cl)) \ r" +apply (rule lub_least, fast) +apply (rule f_in_funcset [THEN funcset_mem]) +apply (rule lub_in_lattice, fast) +(* \x:H. (x, f (lub H r)) \ r *) +apply (rule ballI) +apply (rule transE) +apply (rule CO_trans) +(* instantiates (x, ???z) \ cl. to (x, f x), because of the def of H *) +apply fast +(* so it remains to show (f x, f (lub H cl)) \ r *) +apply (rule_tac f = "f" in monotoneE) +apply (rule monotone_f, fast) +apply (rule lub_in_lattice, fast) +apply (rule lub_upper, fast) +apply assumption +done + +lemma (in CLF) flubH_le_lubH: + "[| H = {x. (x, f x) \ r & x \ A} |] ==> (f (lub H cl), lub H cl) \ r" +apply (rule lub_upper, fast) +apply (rule_tac t = "H" in ssubst, assumption) +apply (rule CollectI) +apply (rule conjI) +apply (rule_tac [2] f_in_funcset [THEN funcset_mem]) +apply (rule_tac [2] lub_in_lattice) +prefer 2 apply fast +apply (rule_tac f = "f" in monotoneE) +apply (rule monotone_f) + apply (blast intro: lub_in_lattice) + apply (blast intro: lub_in_lattice f_in_funcset [THEN funcset_mem]) +apply (simp add: lubH_le_flubH) +done + +lemma (in CLF) lubH_is_fixp: + "H = {x. (x, f x) \ r & x \ A} ==> lub H cl \ fix f A" +apply (simp add: fix_def) +apply (rule conjI) +apply (rule lub_in_lattice, fast) +apply (rule antisymE) +apply (rule CO_antisym) +apply (simp add: flubH_le_lubH) +apply (simp add: lubH_le_flubH) +done + +lemma (in CLF) fix_in_H: + "[| H = {x. (x, f x) \ r & x \ A}; x \ P |] ==> x \ H" +by (simp add: P_def fix_imp_eq [of _ f A] reflE CO_refl + fix_subset [of f A, THEN subsetD]) + +lemma (in CLF) fixf_le_lubH: + "H = {x. (x, f x) \ r & x \ A} ==> \x \ fix f A. (x, lub H cl) \ r" +apply (rule ballI) +apply (rule lub_upper, fast) +apply (rule fix_in_H) +apply (simp_all add: P_def) +done + +lemma (in CLF) lubH_least_fixf: + "H = {x. (x, f x) \ r & x \ A} + ==> \L. (\y \ fix f A. (y,L) \ r) --> (lub H cl, L) \ r" +apply (rule allI) +apply (rule impI) +apply (erule bspec) +apply (rule lubH_is_fixp, assumption) +done + +(* Tarski fixpoint theorem 1, first part *) +lemma (in CLF) T_thm_1_lub: "lub P cl = lub {x. (x, f x) \ r & x \ A} cl" +apply (rule sym) +apply (simp add: P_def) +apply (rule lubI) +apply (rule fix_subset) +apply (rule lub_in_lattice, fast) +apply (simp add: fixf_le_lubH) +apply (simp add: lubH_least_fixf) +done + +(* Tarski for glb *) +lemma (in CLF) glbH_is_fixp: "H = {x. (f x, x) \ r & x \ A} ==> glb H cl \ P" +apply (simp add: glb_dual_lub P_def A_def r_def) +apply (rule dualA_iff [THEN subst]) +apply (rule Tarski.lubH_is_fixp) +apply (rule dualPO) +apply (rule CL_dualCL) +apply (rule f_cl [THEN CLF_dual]) +apply (simp add: dualr_iff dualA_iff) +done + +lemma (in CLF) T_thm_1_glb: "glb P cl = glb {x. (f x, x) \ r & x \ A} cl" +apply (simp add: glb_dual_lub P_def A_def r_def) +apply (rule dualA_iff [THEN subst]) +apply (simp add: Tarski.T_thm_1_lub [of _ f, OF dualPO CL_dualCL] + dualPO CL_dualCL CLF_dual dualr_iff) +done + +(* interval *) +lemma (in CLF) rel_imp_elem: "(x, y) \ r ==> x \ A" +apply (insert CO_refl) +apply (simp add: refl_def, blast) +done + +lemma (in CLF) interval_subset: "[| a \ A; b \ A |] ==> interval r a b <= A" +apply (simp add: interval_def) +apply (blast intro: rel_imp_elem) +done + +lemma (in CLF) intervalI: + "[| (a, x) \ r; (x, b) \ r |] ==> x \ interval r a b" +apply (simp add: interval_def) +done + +lemma (in CLF) interval_lemma1: + "[| S <= interval r a b; x \ S |] ==> (a, x) \ r" +apply (unfold interval_def, fast) +done + +lemma (in CLF) interval_lemma2: + "[| S <= interval r a b; x \ S |] ==> (x, b) \ r" +apply (unfold interval_def, fast) +done + +lemma (in CLF) a_less_lub: + "[| S <= A; S \ {}; + \x \ S. (a,x) \ r; \y \ S. (y, L) \ r |] ==> (a,L) \ r" +by (blast intro: transE PO_imp_trans) + +lemma (in CLF) glb_less_b: + "[| S <= A; S \ {}; + \x \ S. (x,b) \ r; \y \ S. (G, y) \ r |] ==> (G,b) \ r" +by (blast intro: transE PO_imp_trans) + +lemma (in CLF) S_intv_cl: + "[| a \ A; b \ A; S <= interval r a b |]==> S <= A" +by (simp add: subset_trans [OF _ interval_subset]) + +lemma (in CLF) L_in_interval: + "[| a \ A; b \ A; S <= interval r a b; + S \ {}; isLub S cl L; interval r a b \ {} |] ==> L \ interval r a b" +apply (rule intervalI) +apply (rule a_less_lub) +prefer 2 apply assumption +apply (simp add: S_intv_cl) +apply (rule ballI) +apply (simp add: interval_lemma1) +apply (simp add: isLub_upper) +(* (L, b) \ r *) +apply (simp add: isLub_least interval_lemma2) +done + +lemma (in CLF) G_in_interval: + "[| a \ A; b \ A; interval r a b \ {}; S <= interval r a b; isGlb S cl G; + S \ {} |] ==> G \ interval r a b" +apply (simp add: interval_dual) +apply (simp add: Tarski.L_in_interval [of _ f] + dualA_iff A_def dualPO CL_dualCL CLF_dual isGlb_dual_isLub) +done + +lemma (in CLF) intervalPO: + "[| a \ A; b \ A; interval r a b \ {} |] + ==> (| pset = interval r a b, order = induced (interval r a b) r |) + \ PartialOrder" +apply (rule po_subset_po) +apply (simp add: interval_subset) +done + +lemma (in CLF) intv_CL_lub: + "[| a \ A; b \ A; interval r a b \ {} |] + ==> \S. S <= interval r a b --> + (\L. isLub S (| pset = interval r a b, + order = induced (interval r a b) r |) L)" +apply (intro strip) +apply (frule S_intv_cl [THEN CL_imp_ex_isLub]) +prefer 2 apply assumption +apply assumption +apply (erule exE) +(* define the lub for the interval as *) +apply (rule_tac x = "if S = {} then a else L" in exI) +apply (simp (no_asm_simp) add: isLub_def split del: split_if) +apply (intro impI conjI) +(* (if S = {} then a else L) \ interval r a b *) +apply (simp add: CL_imp_PO L_in_interval) +apply (simp add: left_in_interval) +(* lub prop 1 *) +apply (case_tac "S = {}") +(* S = {}, y \ S = False => everything *) +apply fast +(* S \ {} *) +apply simp +(* \y:S. (y, L) \ induced (interval r a b) r *) +apply (rule ballI) +apply (simp add: induced_def L_in_interval) +apply (rule conjI) +apply (rule subsetD) +apply (simp add: S_intv_cl, assumption) +apply (simp add: isLub_upper) +(* \z:interval r a b. (\y:S. (y, z) \ induced (interval r a b) r --> + (if S = {} then a else L, z) \ induced (interval r a b) r *) +apply (rule ballI) +apply (rule impI) +apply (case_tac "S = {}") +(* S = {} *) +apply simp +apply (simp add: induced_def interval_def) +apply (rule conjI) +apply (rule reflE) +apply (rule CO_refl, assumption) +apply (rule interval_not_empty) +apply (rule CO_trans) +apply (simp add: interval_def) +(* S \ {} *) +apply simp +apply (simp add: induced_def L_in_interval) +apply (rule isLub_least, assumption) +apply (rule subsetD) +prefer 2 apply assumption +apply (simp add: S_intv_cl, fast) +done + +lemmas (in CLF) intv_CL_glb = intv_CL_lub [THEN Rdual] + +lemma (in CLF) interval_is_sublattice: + "[| a \ A; b \ A; interval r a b \ {} |] + ==> interval r a b <<= cl" +apply (rule sublatticeI) +apply (simp add: interval_subset) +apply (rule CompleteLatticeI) +apply (simp add: intervalPO) + apply (simp add: intv_CL_lub) +apply (simp add: intv_CL_glb) +done + +lemmas (in CLF) interv_is_compl_latt = + interval_is_sublattice [THEN sublattice_imp_CL] + +(* Top and Bottom *) +lemma (in CLF) Top_dual_Bot: "Top cl = Bot (dual cl)" +by (simp add: Top_def Bot_def least_def greatest_def dualA_iff dualr_iff) + +lemma (in CLF) Bot_dual_Top: "Bot cl = Top (dual cl)" +by (simp add: Top_def Bot_def least_def greatest_def dualA_iff dualr_iff) + +lemma (in CLF) Bot_in_lattice: "Bot cl \ A" +apply (simp add: Bot_def least_def) +apply (rule someI2) +apply (fold A_def) +apply (erule_tac [2] conjunct1) +apply (rule conjI) +apply (rule glb_in_lattice) +apply (rule subset_refl) +apply (fold r_def) +apply (simp add: glb_lower) +done + +lemma (in CLF) Top_in_lattice: "Top cl \ A" +apply (simp add: Top_dual_Bot A_def) +apply (rule dualA_iff [THEN subst]) +apply (blast intro!: Tarski.Bot_in_lattice dualPO CL_dualCL CLF_dual f_cl) +done + +lemma (in CLF) Top_prop: "x \ A ==> (x, Top cl) \ r" +apply (simp add: Top_def greatest_def) +apply (rule someI2) +apply (fold r_def A_def) +prefer 2 apply fast +apply (intro conjI ballI) +apply (rule_tac [2] lub_upper) +apply (auto simp add: lub_in_lattice) +done + +lemma (in CLF) Bot_prop: "x \ A ==> (Bot cl, x) \ r" +apply (simp add: Bot_dual_Top r_def) +apply (rule dualr_iff [THEN subst]) +apply (simp add: Tarski.Top_prop [of _ f] + dualA_iff A_def dualPO CL_dualCL CLF_dual) +done + +lemma (in CLF) Top_intv_not_empty: "x \ A ==> interval r x (Top cl) \ {}" +apply (rule notI) +apply (drule_tac a = "Top cl" in equals0D) +apply (simp add: interval_def) +apply (simp add: refl_def Top_in_lattice Top_prop) +done + +lemma (in CLF) Bot_intv_not_empty: "x \ A ==> interval r (Bot cl) x \ {}" +apply (simp add: Bot_dual_Top) +apply (subst interval_dual) +prefer 2 apply assumption +apply (simp add: A_def) +apply (rule dualA_iff [THEN subst]) +apply (blast intro!: Tarski.Top_in_lattice + f_cl dualPO CL_dualCL CLF_dual) +apply (simp add: Tarski.Top_intv_not_empty [of _ f] + dualA_iff A_def dualPO CL_dualCL CLF_dual) +done + +(* fixed points form a partial order *) +lemma (in CLF) fixf_po: "(| pset = P, order = induced P r|) \ PartialOrder" +by (simp add: P_def fix_subset po_subset_po) + +lemma (in Tarski) Y_subset_A: "Y <= A" +apply (rule subset_trans [OF _ fix_subset]) +apply (rule Y_ss [simplified P_def]) +done + +lemma (in Tarski) lubY_in_A: "lub Y cl \ A" +by (simp add: Y_subset_A [THEN lub_in_lattice]) + +lemma (in Tarski) lubY_le_flubY: "(lub Y cl, f (lub Y cl)) \ r" +apply (rule lub_least) +apply (rule Y_subset_A) +apply (rule f_in_funcset [THEN funcset_mem]) +apply (rule lubY_in_A) +(* Y <= P ==> f x = x *) +apply (rule ballI) +apply (rule_tac t = "x" in fix_imp_eq [THEN subst]) +apply (erule Y_ss [simplified P_def, THEN subsetD]) +(* reduce (f x, f (lub Y cl)) \ r to (x, lub Y cl) \ r by monotonicity *) +apply (rule_tac f = "f" in monotoneE) +apply (rule monotone_f) +apply (simp add: Y_subset_A [THEN subsetD]) +apply (rule lubY_in_A) +apply (simp add: lub_upper Y_subset_A) +done + +lemma (in Tarski) intY1_subset: "intY1 <= A" +apply (unfold intY1_def) +apply (rule interval_subset) +apply (rule lubY_in_A) +apply (rule Top_in_lattice) +done + +lemmas (in Tarski) intY1_elem = intY1_subset [THEN subsetD] + +lemma (in Tarski) intY1_f_closed: "x \ intY1 \ f x \ intY1" +apply (simp add: intY1_def interval_def) +apply (rule conjI) +apply (rule transE) +apply (rule CO_trans) +apply (rule lubY_le_flubY) +(* (f (lub Y cl), f x) \ r *) +apply (rule_tac f=f in monotoneE) +apply (rule monotone_f) +apply (rule lubY_in_A) +apply (simp add: intY1_def interval_def intY1_elem) +apply (simp add: intY1_def interval_def) +(* (f x, Top cl) \ r *) +apply (rule Top_prop) +apply (rule f_in_funcset [THEN funcset_mem]) +apply (simp add: intY1_def interval_def intY1_elem) +done + +lemma (in Tarski) intY1_func: "(%x: intY1. f x) \ intY1 funcset intY1" +apply (rule restrictI) +apply (erule intY1_f_closed) +done + +lemma (in Tarski) intY1_mono: + "monotone (%x: intY1. f x) intY1 (induced intY1 r)" +apply (auto simp add: monotone_def induced_def intY1_f_closed) +apply (blast intro: intY1_elem monotone_f [THEN monotoneE]) +done + +lemma (in Tarski) intY1_is_cl: + "(| pset = intY1, order = induced intY1 r |) \ CompleteLattice" +apply (unfold intY1_def) +apply (rule interv_is_compl_latt) +apply (rule lubY_in_A) +apply (rule Top_in_lattice) +apply (rule Top_intv_not_empty) +apply (rule lubY_in_A) +done + +lemma (in Tarski) v_in_P: "v \ P" +apply (unfold P_def) +apply (rule_tac A = "intY1" in fixf_subset) +apply (rule intY1_subset) +apply (simp add: Tarski.glbH_is_fixp [OF _ intY1_is_cl, simplified] + v_def CL_imp_PO intY1_is_cl CLF_def intY1_func intY1_mono) +done + +lemma (in Tarski) z_in_interval: + "[| z \ P; \y\Y. (y, z) \ induced P r |] ==> z \ intY1" +apply (unfold intY1_def P_def) +apply (rule intervalI) +prefer 2 + apply (erule fix_subset [THEN subsetD, THEN Top_prop]) +apply (rule lub_least) +apply (rule Y_subset_A) +apply (fast elim!: fix_subset [THEN subsetD]) +apply (simp add: induced_def) +done + +lemma (in Tarski) f'z_in_int_rel: "[| z \ P; \y\Y. (y, z) \ induced P r |] + ==> ((%x: intY1. f x) z, z) \ induced intY1 r" +apply (simp add: induced_def intY1_f_closed z_in_interval P_def) +apply (simp add: fix_imp_eq [of _ f A] fix_subset [of f A, THEN subsetD] + CO_refl [THEN reflE]) +done + +lemma (in Tarski) tarski_full_lemma: + "\L. isLub Y (| pset = P, order = induced P r |) L" +apply (rule_tac x = "v" in exI) +apply (simp add: isLub_def) +(* v \ P *) +apply (simp add: v_in_P) +apply (rule conjI) +(* v is lub *) +(* 1. \y:Y. (y, v) \ induced P r *) +apply (rule ballI) +apply (simp add: induced_def subsetD v_in_P) +apply (rule conjI) +apply (erule Y_ss [THEN subsetD]) +apply (rule_tac b = "lub Y cl" in transE) +apply (rule CO_trans) +apply (rule lub_upper) +apply (rule Y_subset_A, assumption) +apply (rule_tac b = "Top cl" in interval_imp_mem) +apply (simp add: v_def) +apply (fold intY1_def) +apply (rule Tarski.glb_in_lattice [OF _ intY1_is_cl, simplified]) + apply (simp add: CL_imp_PO intY1_is_cl, force) +(* v is LEAST ub *) +apply clarify +apply (rule indI) + prefer 3 apply assumption + prefer 2 apply (simp add: v_in_P) +apply (unfold v_def) +apply (rule indE) +apply (rule_tac [2] intY1_subset) +apply (rule Tarski.glb_lower [OF _ intY1_is_cl, simplified]) + apply (simp add: CL_imp_PO intY1_is_cl) + apply force +apply (simp add: induced_def intY1_f_closed z_in_interval) +apply (simp add: P_def fix_imp_eq [of _ f A] + fix_subset [of f A, THEN subsetD] + CO_refl [THEN reflE]) +done + + +lemma CompleteLatticeI_simp: + "[| (| pset = A, order = r |) \ PartialOrder; + \S. S <= A --> (\L. isLub S (| pset = A, order = r |) L) |] + ==> (| pset = A, order = r |) \ CompleteLattice" +by (simp add: CompleteLatticeI Rdual) + +theorem (in CLF) Tarski_full: + "(| pset = P, order = induced P r|) \ CompleteLattice" +apply (rule CompleteLatticeI_simp) +apply (rule fixf_po, clarify) +apply (simp add: P_def A_def r_def) +apply (blast intro!: Tarski.tarski_full_lemma cl_po cl_co f_cl) +done end