# HG changeset patch # User berghofe # Date 1210150612 -7200 # Node ID 0af0f674845d2492af9a033b0bc689976605e956 # Parent 9eede540a5e86fe5bd652000a7c633c357e853a1 - Explicitely passed pred_subset_eq and pred_equals_eq as an argument to the to_set and to_pred attributes, because it is no longer applied automatically - Manually applied predicate1I in proof of accp_subset, because it is no longer part of the claset - Replaced psubset_def by less_le diff -r 9eede540a5e8 -r 0af0f674845d src/HOL/Wellfounded.thy --- a/src/HOL/Wellfounded.thy Wed May 07 10:56:50 2008 +0200 +++ b/src/HOL/Wellfounded.thy Wed May 07 10:56:52 2008 +0200 @@ -271,7 +271,7 @@ done lemmas wfP_SUP = wf_UN [where I=UNIV and r="\i. {(x, y). r i x y}", - to_pred SUP_UN_eq2 bot_empty_eq, simplified, standard] + to_pred SUP_UN_eq2 bot_empty_eq pred_equals_eq, simplified, standard] lemma wf_Union: "[| ALL r:R. wf r; @@ -691,7 +691,7 @@ lemma accp_subset: assumes sub: "R1 \ R2" shows "accp R2 \ accp R1" -proof +proof (rule predicate1I) fix x assume "accp R2 x" then show "accp R1 x" proof (induct x) @@ -745,9 +745,9 @@ lemmas wf_acc_iff = wfP_accp_iff [to_set] -lemmas acc_subset = accp_subset [to_set] +lemmas acc_subset = accp_subset [to_set pred_subset_eq] -lemmas acc_subset_induct = accp_subset_induct [to_set] +lemmas acc_subset_induct = accp_subset_induct [to_set pred_subset_eq] subsection {* Tools for building wellfounded relations *} @@ -837,7 +837,7 @@ done lemma trans_finite_psubset: "trans finite_psubset" -by (simp add: finite_psubset_def psubset_def trans_def, blast) +by (simp add: finite_psubset_def less_le trans_def, blast)