# HG changeset patch # User huffman # Date 1315237130 25200 # Node ID 0b900a9d8023435403fe5d67ec1dd2f536a10894 # Parent f3a8c19708c8dbebdc66281d08d6a5e09f4c0c9a tuned indentation diff -r f3a8c19708c8 -r 0b900a9d8023 src/HOL/Complex.thy --- a/src/HOL/Complex.thy Mon Sep 05 14:42:31 2011 +0200 +++ b/src/HOL/Complex.thy Mon Sep 05 08:38:50 2011 -0700 @@ -12,15 +12,11 @@ datatype complex = Complex real real -primrec - Re :: "complex \ real" -where - Re: "Re (Complex x y) = x" +primrec Re :: "complex \ real" + where Re: "Re (Complex x y) = x" -primrec - Im :: "complex \ real" -where - Im: "Im (Complex x y) = y" +primrec Im :: "complex \ real" + where Im: "Im (Complex x y) = y" lemma complex_surj [simp]: "Complex (Re z) (Im z) = z" by (induct z) simp @@ -37,17 +33,17 @@ instantiation complex :: ab_group_add begin -definition - complex_zero_def: "0 = Complex 0 0" +definition complex_zero_def: + "0 = Complex 0 0" -definition - complex_add_def: "x + y = Complex (Re x + Re y) (Im x + Im y)" +definition complex_add_def: + "x + y = Complex (Re x + Re y) (Im x + Im y)" -definition - complex_minus_def: "- x = Complex (- Re x) (- Im x)" +definition complex_minus_def: + "- x = Complex (- Re x) (- Im x)" -definition - complex_diff_def: "x - (y\complex) = x + - y" +definition complex_diff_def: + "x - (y\complex) = x + - y" lemma Complex_eq_0 [simp]: "Complex a b = 0 \ a = 0 \ b = 0" by (simp add: complex_zero_def) @@ -94,25 +90,23 @@ end - subsection {* Multiplication and Division *} instantiation complex :: field_inverse_zero begin -definition - complex_one_def: "1 = Complex 1 0" +definition complex_one_def: + "1 = Complex 1 0" -definition - complex_mult_def: "x * y = - Complex (Re x * Re y - Im x * Im y) (Re x * Im y + Im x * Re y)" +definition complex_mult_def: + "x * y = Complex (Re x * Re y - Im x * Im y) (Re x * Im y + Im x * Re y)" -definition - complex_inverse_def: "inverse x = +definition complex_inverse_def: + "inverse x = Complex (Re x / ((Re x)\ + (Im x)\)) (- Im x / ((Re x)\ + (Im x)\))" -definition - complex_divide_def: "x / (y\complex) = x * inverse y" +definition complex_divide_def: + "x / (y\complex) = x * inverse y" lemma Complex_eq_1 [simp]: "(Complex a b = 1) = (a = 1 \ b = 0)" by (simp add: complex_one_def) @@ -147,10 +141,10 @@ instance by intro_classes (simp_all add: complex_mult_def - right_distrib left_distrib right_diff_distrib left_diff_distrib - complex_inverse_def complex_divide_def - power2_eq_square add_divide_distrib [symmetric] - complex_eq_iff) + right_distrib left_distrib right_diff_distrib left_diff_distrib + complex_inverse_def complex_divide_def + power2_eq_square add_divide_distrib [symmetric] + complex_eq_iff) end @@ -160,8 +154,8 @@ instantiation complex :: number_ring begin -definition number_of_complex where - complex_number_of_def: "number_of w = (of_int w \ complex)" +definition complex_number_of_def: + "number_of w = (of_int w \ complex)" instance by intro_classes (simp only: complex_number_of_def) @@ -169,26 +163,26 @@ end lemma complex_Re_of_nat [simp]: "Re (of_nat n) = of_nat n" -by (induct n) simp_all + by (induct n) simp_all lemma complex_Im_of_nat [simp]: "Im (of_nat n) = 0" -by (induct n) simp_all + by (induct n) simp_all lemma complex_Re_of_int [simp]: "Re (of_int z) = of_int z" -by (cases z rule: int_diff_cases) simp + by (cases z rule: int_diff_cases) simp lemma complex_Im_of_int [simp]: "Im (of_int z) = 0" -by (cases z rule: int_diff_cases) simp + by (cases z rule: int_diff_cases) simp lemma complex_Re_number_of [simp]: "Re (number_of v) = number_of v" -unfolding number_of_eq by (rule complex_Re_of_int) + unfolding number_of_eq by (rule complex_Re_of_int) lemma complex_Im_number_of [simp]: "Im (number_of v) = 0" -unfolding number_of_eq by (rule complex_Im_of_int) + unfolding number_of_eq by (rule complex_Im_of_int) lemma Complex_eq_number_of [simp]: "(Complex a b = number_of w) = (a = number_of w \ b = 0)" -by (simp add: complex_eq_iff) + by (simp add: complex_eq_iff) subsection {* Scalar Multiplication *} @@ -196,8 +190,8 @@ instantiation complex :: real_field begin -definition - complex_scaleR_def: "scaleR r x = Complex (r * Re x) (r * Im x)" +definition complex_scaleR_def: + "scaleR r x = Complex (r * Re x) (r * Im x)" lemma complex_scaleR [simp]: "scaleR r (Complex a b) = Complex (r * a) (r * b)" @@ -231,34 +225,33 @@ subsection{* Properties of Embedding from Reals *} -abbreviation - complex_of_real :: "real \ complex" where - "complex_of_real \ of_real" +abbreviation complex_of_real :: "real \ complex" + where "complex_of_real \ of_real" lemma complex_of_real_def: "complex_of_real r = Complex r 0" -by (simp add: of_real_def complex_scaleR_def) + by (simp add: of_real_def complex_scaleR_def) lemma Re_complex_of_real [simp]: "Re (complex_of_real z) = z" -by (simp add: complex_of_real_def) + by (simp add: complex_of_real_def) lemma Im_complex_of_real [simp]: "Im (complex_of_real z) = 0" -by (simp add: complex_of_real_def) + by (simp add: complex_of_real_def) lemma Complex_add_complex_of_real [simp]: - "Complex x y + complex_of_real r = Complex (x+r) y" -by (simp add: complex_of_real_def) + shows "Complex x y + complex_of_real r = Complex (x+r) y" + by (simp add: complex_of_real_def) lemma complex_of_real_add_Complex [simp]: - "complex_of_real r + Complex x y = Complex (r+x) y" -by (simp add: complex_of_real_def) + shows "complex_of_real r + Complex x y = Complex (r+x) y" + by (simp add: complex_of_real_def) lemma Complex_mult_complex_of_real: - "Complex x y * complex_of_real r = Complex (x*r) (y*r)" -by (simp add: complex_of_real_def) + shows "Complex x y * complex_of_real r = Complex (x*r) (y*r)" + by (simp add: complex_of_real_def) lemma complex_of_real_mult_Complex: - "complex_of_real r * Complex x y = Complex (r*x) (r*y)" -by (simp add: complex_of_real_def) + shows "complex_of_real r * Complex x y = Complex (r*x) (r*y)" + by (simp add: complex_of_real_def) subsection {* Vector Norm *} @@ -269,9 +262,8 @@ definition complex_norm_def: "norm z = sqrt ((Re z)\ + (Im z)\)" -abbreviation - cmod :: "complex \ real" where - "cmod \ norm" +abbreviation cmod :: "complex \ real" + where "cmod \ norm" definition complex_sgn_def: "sgn x = x /\<^sub>R cmod x" @@ -313,29 +305,30 @@ end lemma cmod_unit_one [simp]: "cmod (Complex (cos a) (sin a)) = 1" -by simp + by simp lemma cmod_complex_polar [simp]: - "cmod (complex_of_real r * Complex (cos a) (sin a)) = abs r" -by (simp add: norm_mult) + "cmod (complex_of_real r * Complex (cos a) (sin a)) = abs r" + by (simp add: norm_mult) lemma complex_Re_le_cmod: "Re x \ cmod x" -unfolding complex_norm_def -by (rule real_sqrt_sum_squares_ge1) + unfolding complex_norm_def + by (rule real_sqrt_sum_squares_ge1) lemma complex_mod_minus_le_complex_mod [simp]: "- cmod x \ cmod x" -by (rule order_trans [OF _ norm_ge_zero], simp) + by (rule order_trans [OF _ norm_ge_zero], simp) lemma complex_mod_triangle_ineq2 [simp]: "cmod(b + a) - cmod b \ cmod a" -by (rule ord_le_eq_trans [OF norm_triangle_ineq2], simp) + by (rule ord_le_eq_trans [OF norm_triangle_ineq2], simp) lemmas real_sum_squared_expand = power2_sum [where 'a=real] lemma abs_Re_le_cmod: "\Re x\ \ cmod x" -by (cases x) simp + by (cases x) simp lemma abs_Im_le_cmod: "\Im x\ \ cmod x" -by (cases x) simp + by (cases x) simp + subsection {* Completeness of the Complexes *} @@ -357,25 +350,25 @@ lemmas Cauchy_Im = bounded_linear.Cauchy [OF bounded_linear_Im] lemma tendsto_Complex [tendsto_intros]: - assumes "(f ---> a) net" and "(g ---> b) net" - shows "((\x. Complex (f x) (g x)) ---> Complex a b) net" + assumes "(f ---> a) F" and "(g ---> b) F" + shows "((\x. Complex (f x) (g x)) ---> Complex a b) F" proof (rule tendstoI) fix r :: real assume "0 < r" hence "0 < r / sqrt 2" by (simp add: divide_pos_pos) - have "eventually (\x. dist (f x) a < r / sqrt 2) net" - using `(f ---> a) net` and `0 < r / sqrt 2` by (rule tendstoD) + have "eventually (\x. dist (f x) a < r / sqrt 2) F" + using `(f ---> a) F` and `0 < r / sqrt 2` by (rule tendstoD) moreover - have "eventually (\x. dist (g x) b < r / sqrt 2) net" - using `(g ---> b) net` and `0 < r / sqrt 2` by (rule tendstoD) + have "eventually (\x. dist (g x) b < r / sqrt 2) F" + using `(g ---> b) F` and `0 < r / sqrt 2` by (rule tendstoD) ultimately - show "eventually (\x. dist (Complex (f x) (g x)) (Complex a b) < r) net" + show "eventually (\x. dist (Complex (f x) (g x)) (Complex a b) < r) F" by (rule eventually_elim2) (simp add: dist_norm real_sqrt_sum_squares_less) qed lemma LIMSEQ_Complex: "\X ----> a; Y ----> b\ \ (\n. Complex (X n) (Y n)) ----> Complex a b" -by (rule tendsto_Complex) + by (rule tendsto_Complex) instance complex :: banach proof @@ -394,133 +387,131 @@ subsection {* The Complex Number @{term "\"} *} -definition - "ii" :: complex ("\") where - i_def: "ii \ Complex 0 1" +definition "ii" :: complex ("\") + where i_def: "ii \ Complex 0 1" lemma complex_Re_i [simp]: "Re ii = 0" -by (simp add: i_def) + by (simp add: i_def) lemma complex_Im_i [simp]: "Im ii = 1" -by (simp add: i_def) + by (simp add: i_def) lemma Complex_eq_i [simp]: "(Complex x y = ii) = (x = 0 \ y = 1)" -by (simp add: i_def) + by (simp add: i_def) lemma complex_i_not_zero [simp]: "ii \ 0" -by (simp add: complex_eq_iff) + by (simp add: complex_eq_iff) lemma complex_i_not_one [simp]: "ii \ 1" -by (simp add: complex_eq_iff) + by (simp add: complex_eq_iff) lemma complex_i_not_number_of [simp]: "ii \ number_of w" -by (simp add: complex_eq_iff) + by (simp add: complex_eq_iff) lemma i_mult_Complex [simp]: "ii * Complex a b = Complex (- b) a" -by (simp add: complex_eq_iff) + by (simp add: complex_eq_iff) lemma Complex_mult_i [simp]: "Complex a b * ii = Complex (- b) a" -by (simp add: complex_eq_iff) + by (simp add: complex_eq_iff) lemma i_complex_of_real [simp]: "ii * complex_of_real r = Complex 0 r" -by (simp add: i_def complex_of_real_def) + by (simp add: i_def complex_of_real_def) lemma complex_of_real_i [simp]: "complex_of_real r * ii = Complex 0 r" -by (simp add: i_def complex_of_real_def) + by (simp add: i_def complex_of_real_def) lemma i_squared [simp]: "ii * ii = -1" -by (simp add: i_def) + by (simp add: i_def) lemma power2_i [simp]: "ii\ = -1" -by (simp add: power2_eq_square) + by (simp add: power2_eq_square) lemma inverse_i [simp]: "inverse ii = - ii" -by (rule inverse_unique, simp) + by (rule inverse_unique, simp) subsection {* Complex Conjugation *} -definition - cnj :: "complex \ complex" where +definition cnj :: "complex \ complex" where "cnj z = Complex (Re z) (- Im z)" lemma complex_cnj [simp]: "cnj (Complex a b) = Complex a (- b)" -by (simp add: cnj_def) + by (simp add: cnj_def) lemma complex_Re_cnj [simp]: "Re (cnj x) = Re x" -by (simp add: cnj_def) + by (simp add: cnj_def) lemma complex_Im_cnj [simp]: "Im (cnj x) = - Im x" -by (simp add: cnj_def) + by (simp add: cnj_def) lemma complex_cnj_cancel_iff [simp]: "(cnj x = cnj y) = (x = y)" -by (simp add: complex_eq_iff) + by (simp add: complex_eq_iff) lemma complex_cnj_cnj [simp]: "cnj (cnj z) = z" -by (simp add: cnj_def) + by (simp add: cnj_def) lemma complex_cnj_zero [simp]: "cnj 0 = 0" -by (simp add: complex_eq_iff) + by (simp add: complex_eq_iff) lemma complex_cnj_zero_iff [iff]: "(cnj z = 0) = (z = 0)" -by (simp add: complex_eq_iff) + by (simp add: complex_eq_iff) lemma complex_cnj_add: "cnj (x + y) = cnj x + cnj y" -by (simp add: complex_eq_iff) + by (simp add: complex_eq_iff) lemma complex_cnj_diff: "cnj (x - y) = cnj x - cnj y" -by (simp add: complex_eq_iff) + by (simp add: complex_eq_iff) lemma complex_cnj_minus: "cnj (- x) = - cnj x" -by (simp add: complex_eq_iff) + by (simp add: complex_eq_iff) lemma complex_cnj_one [simp]: "cnj 1 = 1" -by (simp add: complex_eq_iff) + by (simp add: complex_eq_iff) lemma complex_cnj_mult: "cnj (x * y) = cnj x * cnj y" -by (simp add: complex_eq_iff) + by (simp add: complex_eq_iff) lemma complex_cnj_inverse: "cnj (inverse x) = inverse (cnj x)" -by (simp add: complex_inverse_def) + by (simp add: complex_inverse_def) lemma complex_cnj_divide: "cnj (x / y) = cnj x / cnj y" -by (simp add: complex_divide_def complex_cnj_mult complex_cnj_inverse) + by (simp add: complex_divide_def complex_cnj_mult complex_cnj_inverse) lemma complex_cnj_power: "cnj (x ^ n) = cnj x ^ n" -by (induct n, simp_all add: complex_cnj_mult) + by (induct n, simp_all add: complex_cnj_mult) lemma complex_cnj_of_nat [simp]: "cnj (of_nat n) = of_nat n" -by (simp add: complex_eq_iff) + by (simp add: complex_eq_iff) lemma complex_cnj_of_int [simp]: "cnj (of_int z) = of_int z" -by (simp add: complex_eq_iff) + by (simp add: complex_eq_iff) lemma complex_cnj_number_of [simp]: "cnj (number_of w) = number_of w" -by (simp add: complex_eq_iff) + by (simp add: complex_eq_iff) lemma complex_cnj_scaleR: "cnj (scaleR r x) = scaleR r (cnj x)" -by (simp add: complex_eq_iff) + by (simp add: complex_eq_iff) lemma complex_mod_cnj [simp]: "cmod (cnj z) = cmod z" -by (simp add: complex_norm_def) + by (simp add: complex_norm_def) lemma complex_cnj_complex_of_real [simp]: "cnj (of_real x) = of_real x" -by (simp add: complex_eq_iff) + by (simp add: complex_eq_iff) lemma complex_cnj_i [simp]: "cnj ii = - ii" -by (simp add: complex_eq_iff) + by (simp add: complex_eq_iff) lemma complex_add_cnj: "z + cnj z = complex_of_real (2 * Re z)" -by (simp add: complex_eq_iff) + by (simp add: complex_eq_iff) lemma complex_diff_cnj: "z - cnj z = complex_of_real (2 * Im z) * ii" -by (simp add: complex_eq_iff) + by (simp add: complex_eq_iff) lemma complex_mult_cnj: "z * cnj z = complex_of_real ((Re z)\ + (Im z)\)" -by (simp add: complex_eq_iff power2_eq_square) + by (simp add: complex_eq_iff power2_eq_square) lemma complex_mod_mult_cnj: "cmod (z * cnj z) = (cmod z)\" -by (simp add: norm_mult power2_eq_square) + by (simp add: norm_mult power2_eq_square) lemma bounded_linear_cnj: "bounded_linear cnj" using complex_cnj_add complex_cnj_scaleR @@ -537,34 +528,33 @@ text {*------------ Argand -------------*} -definition - arg :: "complex => real" where +definition arg :: "complex => real" where "arg z = (SOME a. Re(sgn z) = cos a & Im(sgn z) = sin a & -pi < a & a \ pi)" lemma sgn_eq: "sgn z = z / complex_of_real (cmod z)" -by (simp add: complex_sgn_def divide_inverse scaleR_conv_of_real mult_commute) + by (simp add: sgn_div_norm divide_inverse scaleR_conv_of_real mult_commute) lemma i_mult_eq: "ii * ii = complex_of_real (-1)" -by (simp add: i_def complex_of_real_def) + by (simp add: i_def complex_of_real_def) lemma i_mult_eq2 [simp]: "ii * ii = -(1::complex)" -by (simp add: i_def complex_one_def) + by (simp add: i_def complex_one_def) lemma complex_eq_cancel_iff2 [simp]: - "(Complex x y = complex_of_real xa) = (x = xa & y = 0)" -by (simp add: complex_of_real_def) + shows "(Complex x y = complex_of_real xa) = (x = xa & y = 0)" + by (simp add: complex_of_real_def) lemma Re_sgn [simp]: "Re(sgn z) = Re(z)/cmod z" -by (simp add: complex_sgn_def divide_inverse) + by (simp add: complex_sgn_def divide_inverse) lemma Im_sgn [simp]: "Im(sgn z) = Im(z)/cmod z" -by (simp add: complex_sgn_def divide_inverse) + by (simp add: complex_sgn_def divide_inverse) lemma complex_inverse_complex_split: "inverse(complex_of_real x + ii * complex_of_real y) = complex_of_real(x/(x ^ 2 + y ^ 2)) - ii * complex_of_real(y/(x ^ 2 + y ^ 2))" -by (simp add: complex_of_real_def i_def diff_minus divide_inverse) + by (simp add: complex_of_real_def i_def diff_minus divide_inverse) (*----------------------------------------------------------------------------*) (* Many of the theorems below need to be moved elsewhere e.g. Transc. Also *) @@ -638,10 +628,10 @@ done lemma Re_rcis [simp]: "Re(rcis r a) = r * cos a" -by (simp add: rcis_def cis_def) + by (simp add: rcis_def cis_def) lemma Im_rcis [simp]: "Im(rcis r a) = r * sin a" -by (simp add: rcis_def cis_def) + by (simp add: rcis_def cis_def) lemma sin_cos_squared_add2_mult: "(r * cos a)\ + (r * sin a)\ = r\" proof - @@ -651,44 +641,44 @@ qed lemma complex_mod_rcis [simp]: "cmod(rcis r a) = abs r" -by (simp add: rcis_def cis_def sin_cos_squared_add2_mult) + by (simp add: rcis_def cis_def sin_cos_squared_add2_mult) lemma complex_mod_sqrt_Re_mult_cnj: "cmod z = sqrt (Re (z * cnj z))" -by (simp add: cmod_def power2_eq_square) + by (simp add: cmod_def power2_eq_square) lemma complex_In_mult_cnj_zero [simp]: "Im (z * cnj z) = 0" -by simp + by simp lemma cis_rcis_eq: "cis a = rcis 1 a" -by (simp add: rcis_def) + by (simp add: rcis_def) lemma rcis_mult: "rcis r1 a * rcis r2 b = rcis (r1*r2) (a + b)" -by (simp add: rcis_def cis_def cos_add sin_add right_distrib right_diff_distrib - complex_of_real_def) + by (simp add: rcis_def cis_def cos_add sin_add right_distrib + right_diff_distrib complex_of_real_def) lemma cis_mult: "cis a * cis b = cis (a + b)" -by (simp add: cis_rcis_eq rcis_mult) + by (simp add: cis_rcis_eq rcis_mult) lemma cis_zero [simp]: "cis 0 = 1" -by (simp add: cis_def complex_one_def) + by (simp add: cis_def complex_one_def) lemma rcis_zero_mod [simp]: "rcis 0 a = 0" -by (simp add: rcis_def) + by (simp add: rcis_def) lemma rcis_zero_arg [simp]: "rcis r 0 = complex_of_real r" -by (simp add: rcis_def) + by (simp add: rcis_def) lemma complex_of_real_minus_one: "complex_of_real (-(1::real)) = -(1::complex)" -by (simp add: complex_of_real_def complex_one_def) + by (simp add: complex_of_real_def complex_one_def) lemma complex_i_mult_minus [simp]: "ii * (ii * x) = - x" -by (simp add: mult_assoc [symmetric]) + by (simp add: mult_assoc [symmetric]) lemma cis_real_of_nat_Suc_mult: "cis (real (Suc n) * a) = cis a * cis (real n * a)" -by (simp add: cis_def real_of_nat_Suc left_distrib cos_add sin_add right_distrib) + by (simp add: cis_def real_of_nat_Suc left_distrib cos_add sin_add right_distrib) lemma DeMoivre: "(cis a) ^ n = cis (real n * a)" apply (induct_tac "n") @@ -696,16 +686,16 @@ done lemma DeMoivre2: "(rcis r a) ^ n = rcis (r ^ n) (real n * a)" -by (simp add: rcis_def power_mult_distrib DeMoivre) + by (simp add: rcis_def power_mult_distrib DeMoivre) lemma cis_inverse [simp]: "inverse(cis a) = cis (-a)" -by (simp add: cis_def complex_inverse_complex_split diff_minus) + by (simp add: cis_def complex_inverse_complex_split diff_minus) lemma rcis_inverse: "inverse(rcis r a) = rcis (1/r) (-a)" -by (simp add: divide_inverse rcis_def) + by (simp add: divide_inverse rcis_def) lemma cis_divide: "cis a / cis b = cis (a - b)" -by (simp add: complex_divide_def cis_mult diff_minus) + by (simp add: complex_divide_def cis_mult diff_minus) lemma rcis_divide: "rcis r1 a / rcis r2 b = rcis (r1/r2) (a - b)" apply (simp add: complex_divide_def) @@ -714,16 +704,16 @@ done lemma Re_cis [simp]: "Re(cis a) = cos a" -by (simp add: cis_def) + by (simp add: cis_def) lemma Im_cis [simp]: "Im(cis a) = sin a" -by (simp add: cis_def) + by (simp add: cis_def) lemma cos_n_Re_cis_pow_n: "cos (real n * a) = Re(cis a ^ n)" -by (auto simp add: DeMoivre) + by (auto simp add: DeMoivre) lemma sin_n_Im_cis_pow_n: "sin (real n * a) = Im(cis a ^ n)" -by (auto simp add: DeMoivre) + by (auto simp add: DeMoivre) lemma complex_expi_Ex: "\a r. z = complex_of_real r * expi a" apply (insert rcis_Ex [of z]) @@ -732,7 +722,7 @@ done lemma expi_two_pi_i [simp]: "expi((2::complex) * complex_of_real pi * ii) = 1" -by (simp add: expi_def cis_def) + by (simp add: expi_def cis_def) text {* Legacy theorem names *}