# HG changeset patch # User krauss # Date 1258985198 -3600 # Node ID 0c348f7997f76d50f20162d76ec47cf8887f4fc5 # Parent 0cb5002c52dbcdc5c7eb724de0cc43d71225cf66 documented size_change in isar-ref manual diff -r 0cb5002c52db -r 0c348f7997f7 doc-src/IsarRef/Thy/HOL_Specific.thy --- a/doc-src/IsarRef/Thy/HOL_Specific.thy Mon Nov 23 15:06:37 2009 +0100 +++ b/doc-src/IsarRef/Thy/HOL_Specific.thy Mon Nov 23 15:06:38 2009 +0100 @@ -506,6 +506,7 @@ @{method_def (HOL) pat_completeness} & : & @{text method} \\ @{method_def (HOL) relation} & : & @{text method} \\ @{method_def (HOL) lexicographic_order} & : & @{text method} \\ + @{method_def (HOL) size_change} & : & @{text method} \\ \end{matharray} \begin{rail} @@ -513,6 +514,9 @@ ; 'lexicographic\_order' ( clasimpmod * ) ; + 'size\_change' ( orders ( clasimpmod * ) ) + ; + orders: ( 'max' | 'min' | 'ms' ) * \end{rail} \begin{description} @@ -540,6 +544,18 @@ In case of failure, extensive information is printed, which can help to analyse the situation (cf.\ \cite{isabelle-function}). + \item @{method (HOL) "size_change"} also works on termination goals, + using a variation of the size-change principle, together with a + graph decomposition technique (see \cite{krauss_phd} for details). + Three kinds of orders are used internally: @{text max}, @{text min}, + and @{text ms} (multiset), which is only available when the theory + @{text Multiset} is loaded. When no order kinds are given, they are + tried in order. The search for a termination proof uses SAT solving + internally. + + For local descent proofs, the same context modifiers as for @{method + auto} are accepted, see \secref{sec:clasimp}. + \end{description} *} diff -r 0cb5002c52db -r 0c348f7997f7 doc-src/IsarRef/Thy/document/HOL_Specific.tex --- a/doc-src/IsarRef/Thy/document/HOL_Specific.tex Mon Nov 23 15:06:37 2009 +0100 +++ b/doc-src/IsarRef/Thy/document/HOL_Specific.tex Mon Nov 23 15:06:38 2009 +0100 @@ -512,6 +512,7 @@ \indexdef{HOL}{method}{pat\_completeness}\hypertarget{method.HOL.pat-completeness}{\hyperlink{method.HOL.pat-completeness}{\mbox{\isa{pat{\isacharunderscore}completeness}}}} & : & \isa{method} \\ \indexdef{HOL}{method}{relation}\hypertarget{method.HOL.relation}{\hyperlink{method.HOL.relation}{\mbox{\isa{relation}}}} & : & \isa{method} \\ \indexdef{HOL}{method}{lexicographic\_order}\hypertarget{method.HOL.lexicographic-order}{\hyperlink{method.HOL.lexicographic-order}{\mbox{\isa{lexicographic{\isacharunderscore}order}}}} & : & \isa{method} \\ + \indexdef{HOL}{method}{size\_change}\hypertarget{method.HOL.size-change}{\hyperlink{method.HOL.size-change}{\mbox{\isa{size{\isacharunderscore}change}}}} & : & \isa{method} \\ \end{matharray} \begin{rail} @@ -519,6 +520,9 @@ ; 'lexicographic\_order' ( clasimpmod * ) ; + 'size\_change' ( orders ( clasimpmod * ) ) + ; + orders: ( 'max' | 'min' | 'ms' ) * \end{rail} \begin{description} @@ -546,6 +550,17 @@ In case of failure, extensive information is printed, which can help to analyse the situation (cf.\ \cite{isabelle-function}). + \item \hyperlink{method.HOL.size-change}{\mbox{\isa{size{\isacharunderscore}change}}} also works on termination goals, + using a variation of the size-change principle, together with a + graph decomposition technique (see \cite{krauss_phd} for details). + Three kinds of orders are used internally: \isa{max}, \isa{min}, + and \isa{ms} (multiset), which is only available when the theory + \isa{Multiset} is loaded. When no order kinds are given, they are + tried in order. The search for a termination proof uses SAT solving + internally. + + For local descent proofs, the same context modifiers as for \hyperlink{method.auto}{\mbox{\isa{auto}}} are accepted, see \secref{sec:clasimp}. + \end{description}% \end{isamarkuptext}% \isamarkuptrue%