# HG changeset patch # User huffman # Date 1330006996 -3600 # Node ID 0c3a5e28f425dacad12b7d1e01cc1023cf2d1efb # Parent 5cb607cb765198e860c9ed0ccd1fbf486f332eb6 make uses of bin_split respect int/bin distinction diff -r 5cb607cb7651 -r 0c3a5e28f425 src/HOL/Word/Bit_Int.thy --- a/src/HOL/Word/Bit_Int.thy Thu Feb 23 15:19:31 2012 +0100 +++ b/src/HOL/Word/Bit_Int.thy Thu Feb 23 15:23:16 2012 +0100 @@ -519,13 +519,9 @@ lemma bin_split_zero [simp]: "bin_split n 0 = (0, 0)" by (induct n) auto -lemma bin_split_Pls [simp]: - "bin_split n Int.Pls = (Int.Pls, Int.Pls)" - unfolding Pls_def by (rule bin_split_zero) - -lemma bin_split_Min [simp]: - "bin_split n Int.Min = (Int.Min, bintrunc n Int.Min)" - by (induct n) (auto simp: Let_def split: ls_splits) +lemma bin_split_minus1 [simp]: + "bin_split n -1 = (-1, bintrunc n -1)" + by (induct n) auto lemma bin_split_trunc: "bin_split (min m n) c = (a, b) ==> @@ -553,7 +549,7 @@ lemma bin_split_num: "bin_split n b = (b div 2 ^ n, b mod 2 ^ n)" - apply (induct n arbitrary: b, simp add: Pls_def) + apply (induct n arbitrary: b, simp) apply (simp add: bin_rest_def zdiv_zmult2_eq) apply (case_tac b rule: bin_exhaust) apply simp