# HG changeset patch # User berghofe # Date 999267216 -7200 # Node ID 0c96830636a1c0eff16ae3b2c29b74942a5c3efc # Parent 5f2616a1c10ae959907e265701da283dba4f4feb New implementation of LF style proof terms. diff -r 5f2616a1c10a -r 0c96830636a1 src/Pure/proofterm.ML --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/Pure/proofterm.ML Fri Aug 31 16:13:36 2001 +0200 @@ -0,0 +1,1007 @@ +(* Title: Pure/proofterm.ML + ID: $Id$ + Author: Stefan Berghofer + Copyright 2000 TU Muenchen + +LF style proof terms +*) + +infix 8 % %% %%%; + +signature BASIC_PROOFTERM = +sig + datatype deriv_kind = MinDeriv | ThmDeriv | FullDeriv; + val keep_derivs : deriv_kind ref + + datatype proof = + PBound of int + | Abst of string * typ option * proof + | AbsP of string * term option * proof + | op %% of proof * term option + | op % of proof * proof + | Hyp of term + | PThm of (string * (string * string list) list) * proof * term * typ list option + | PAxm of string * term * typ list option + | Oracle of string * term * typ list option + | MinProof of proof list; + + val %%% : proof * term -> proof +end; + +signature PROOFTERM = +sig + include BASIC_PROOFTERM + + val infer_derivs : (proof -> proof -> proof) -> bool * proof -> bool * proof -> bool * proof + val infer_derivs' : (proof -> proof) -> (bool * proof -> bool * proof) + + (** primitive operations **) + val proof_combt : proof * term list -> proof + val proof_combt' : proof * term option list -> proof + val proof_combP : proof * proof list -> proof + val strip_combt : proof -> proof * term option list + val strip_combP : proof -> proof * proof list + val strip_thm : proof -> proof + val map_proof_terms : (term -> term) -> (typ -> typ) -> proof -> proof + val fold_proof_terms : (term * 'a -> 'a) -> (typ * 'a -> 'a) -> 'a * proof -> 'a + val add_prf_names : string list * proof -> string list + val add_prf_tfree_names : string list * proof -> string list + val add_prf_tvar_ixns : indexname list * proof -> indexname list + val prf_abstract_over : term -> proof -> proof + val prf_incr_bv : int -> int -> int -> int -> proof -> proof + val incr_pboundvars : int -> int -> proof -> proof + val prf_loose_bvar1 : proof -> int -> bool + val prf_loose_Pbvar1 : proof -> int -> bool + val norm_proof : Envir.env -> proof -> proof + val norm_proof' : Envir.env -> proof -> proof + val prf_subst_bounds : term list -> proof -> proof + val prf_subst_pbounds : proof list -> proof -> proof + val freeze_thaw_prf : proof -> proof * (proof -> proof) + + val thms_of_proof : (term * proof) list Symtab.table -> proof -> + (term * proof) list Symtab.table + val axms_of_proof : proof Symtab.table -> proof -> proof Symtab.table + val oracles_of_proof : proof list -> proof -> proof list + + (** proof terms for specific inference rules **) + val implies_intr_proof : term -> proof -> proof + val forall_intr_proof : term -> string -> proof -> proof + val varify_proof : term -> string list -> proof -> proof + val freezeT : term -> proof -> proof + val rotate_proof : term list -> term -> int -> proof -> proof + val permute_prems_prf : term list -> int -> int -> proof -> proof + val instantiate : (indexname * typ) list -> (term * term) list -> proof -> proof + val lift_proof : term -> int -> term -> proof -> proof + val assumption_proof : term list -> term -> int -> proof -> proof + val bicompose_proof : term list -> term list -> term list -> term option -> + int -> proof -> proof -> proof + val equality_axms : (string * term) list + val reflexive_axm : proof + val symmetric_axm : proof + val transitive_axm : proof + val equal_intr_axm : proof + val equal_elim_axm : proof + val abstract_rule_axm : proof + val combination_axm : proof + val reflexive : proof + val symmetric : proof -> proof + val transitive : term -> typ -> proof -> proof -> proof + val abstract_rule : term -> string -> proof -> proof + val combination : term -> term -> term -> term -> typ -> proof -> proof -> proof + val equal_intr : term -> term -> proof -> proof -> proof + val equal_elim : term -> term -> proof -> proof -> proof + val axm_proof : string -> term -> proof + val oracle_proof : string -> term -> proof + val thm_proof : Sign.sg -> string * (string * string list) list -> + term list -> term -> proof -> proof + val get_name_tags : term -> proof -> string * (string * string list) list + + (** rewriting on proof terms **) + val add_prf_rrules : theory -> (proof * proof) list -> unit + val add_prf_rprocs : theory -> + (string * (Term.typ list -> proof -> proof option)) list -> unit + val rewrite_proof : Type.type_sig -> (proof * proof) list * + (string * (typ list -> proof -> proof option)) list -> proof -> proof + val init : theory -> theory + +end + +structure Proofterm : PROOFTERM = +struct + +datatype proof = + PBound of int + | Abst of string * typ option * proof + | AbsP of string * term option * proof + | op %% of proof * term option + | op % of proof * proof + | Hyp of term + | PThm of (string * (string * string list) list) * proof * term * typ list option + | PAxm of string * term * typ list option + | Oracle of string * term * typ list option + | MinProof of proof list; + +fun oracles_of_proof prfs prf = + let + fun oras_of (tabs, Abst (_, _, prf)) = oras_of (tabs, prf) + | oras_of (tabs, AbsP (_, _, prf)) = oras_of (tabs, prf) + | oras_of (tabs, prf %% _) = oras_of (tabs, prf) + | oras_of (tabs, prf1 % prf2) = oras_of (oras_of (tabs, prf1), prf2) + | oras_of (tabs as (thms, oras), PThm ((name, _), prf, prop, _)) = + (case Symtab.lookup (thms, name) of + None => oras_of ((Symtab.update ((name, [prop]), thms), oras), prf) + | Some ps => if prop mem ps then tabs else + oras_of ((Symtab.update ((name, prop::ps), thms), oras), prf)) + | oras_of ((thms, oras), prf as Oracle _) = (thms, prf ins oras) + | oras_of (tabs, MinProof prfs) = foldl oras_of (tabs, prfs) + | oras_of (tabs, _) = tabs + in + snd (oras_of ((Symtab.empty, prfs), prf)) + end; + +fun thms_of_proof tab (Abst (_, _, prf)) = thms_of_proof tab prf + | thms_of_proof tab (AbsP (_, _, prf)) = thms_of_proof tab prf + | thms_of_proof tab (prf1 % prf2) = thms_of_proof (thms_of_proof tab prf1) prf2 + | thms_of_proof tab (prf %% _) = thms_of_proof tab prf + | thms_of_proof tab (prf' as PThm ((s, _), prf, prop, _)) = + (case Symtab.lookup (tab, s) of + None => thms_of_proof (Symtab.update ((s, [(prop, prf')]), tab)) prf + | Some ps => if exists (equal prop o fst) ps then tab else + thms_of_proof (Symtab.update ((s, (prop, prf')::ps), tab)) prf) + | thms_of_proof tab _ = tab; + +fun axms_of_proof tab (Abst (_, _, prf)) = axms_of_proof tab prf + | axms_of_proof tab (AbsP (_, _, prf)) = axms_of_proof tab prf + | axms_of_proof tab (prf1 % prf2) = axms_of_proof (axms_of_proof tab prf1) prf2 + | axms_of_proof tab (prf %% _) = axms_of_proof tab prf + | axms_of_proof tab (prf as PAxm (s, _, _)) = Symtab.update ((s, prf), tab) + | axms_of_proof tab _ = tab; + +(** collect all theorems, axioms and oracles **) + +fun mk_min_proof (prfs, Abst (_, _, prf)) = mk_min_proof (prfs, prf) + | mk_min_proof (prfs, AbsP (_, _, prf)) = mk_min_proof (prfs, prf) + | mk_min_proof (prfs, prf %% _) = mk_min_proof (prfs, prf) + | mk_min_proof (prfs, prf1 % prf2) = mk_min_proof (mk_min_proof (prfs, prf1), prf2) + | mk_min_proof (prfs, prf as PThm _) = prf ins prfs + | mk_min_proof (prfs, prf as PAxm _) = prf ins prfs + | mk_min_proof (prfs, prf as Oracle _) = prf ins prfs + | mk_min_proof (prfs, MinProof prfs') = prfs union prfs' + | mk_min_proof (prfs, _) = prfs; + +(** proof objects with different levels of detail **) + +datatype deriv_kind = MinDeriv | ThmDeriv | FullDeriv; + +val keep_derivs = ref FullDeriv; + +fun if_ora b = if b then oracles_of_proof else K; + +fun infer_derivs f (ora1, prf1) (ora2, prf2) = + (ora1 orelse ora2, + case !keep_derivs of + FullDeriv => f prf1 prf2 + | ThmDeriv => MinProof (mk_min_proof (mk_min_proof ([], prf1), prf2)) + | MinDeriv => MinProof (if_ora ora2 (if_ora ora1 [] prf1) prf2)); + +fun infer_derivs' f (ora, prf) = + (ora, + case !keep_derivs of + FullDeriv => f prf + | ThmDeriv => MinProof (mk_min_proof ([], prf)) + | MinDeriv => MinProof (if_ora ora [] prf)); + +fun (prf %%% t) = prf %% Some t; + +val proof_combt = foldl (op %%%); +val proof_combt' = foldl (op %%); +val proof_combP = foldl (op %); + +fun strip_combt prf = + let fun stripc (prf %% t, ts) = stripc (prf, t::ts) + | stripc x = x + in stripc (prf, []) end; + +fun strip_combP prf = + let fun stripc (prf % prf', prfs) = stripc (prf, prf'::prfs) + | stripc x = x + in stripc (prf, []) end; + +fun strip_thm prf = (case strip_combt (fst (strip_combP prf)) of + (PThm (_, prf', _, _), _) => prf' + | _ => prf); + +val mk_Abst = foldr (fn ((s, T:typ), prf) => Abst (s, None, prf)); +fun mk_AbsP (i, prf) = funpow i (fn prf => AbsP ("H", None, prf)) prf; + +fun map_proof_terms f g (Abst (s, T, prf)) = Abst (s, apsome g T, map_proof_terms f g prf) + | map_proof_terms f g (AbsP (s, t, prf)) = AbsP (s, apsome f t, map_proof_terms f g prf) + | map_proof_terms f g (prf %% t) = map_proof_terms f g prf %% apsome f t + | map_proof_terms f g (prf1 % prf2) = map_proof_terms f g prf1 % map_proof_terms f g prf2 + | map_proof_terms _ g (PThm (a, prf, prop, Some Ts)) = PThm (a, prf, prop, Some (map g Ts)) + | map_proof_terms _ g (PAxm (a, prop, Some Ts)) = PAxm (a, prop, Some (map g Ts)) + | map_proof_terms _ _ prf = prf; + +fun fold_proof_terms f g (a, Abst (_, Some T, prf)) = fold_proof_terms f g (g (T, a), prf) + | fold_proof_terms f g (a, Abst (_, None, prf)) = fold_proof_terms f g (a, prf) + | fold_proof_terms f g (a, AbsP (_, Some t, prf)) = fold_proof_terms f g (f (t, a), prf) + | fold_proof_terms f g (a, AbsP (_, None, prf)) = fold_proof_terms f g (a, prf) + | fold_proof_terms f g (a, prf %% Some t) = f (t, fold_proof_terms f g (a, prf)) + | fold_proof_terms f g (a, prf %% None) = fold_proof_terms f g (a, prf) + | fold_proof_terms f g (a, prf1 % prf2) = fold_proof_terms f g + (fold_proof_terms f g (a, prf1), prf2) + | fold_proof_terms _ g (a, PThm (_, _, _, Some Ts)) = foldr g (Ts, a) + | fold_proof_terms _ g (a, PAxm (_, prop, Some Ts)) = foldr g (Ts, a) + | fold_proof_terms _ _ (a, _) = a; + +val add_prf_names = fold_proof_terms add_term_names ((uncurry K) o swap); +val add_prf_tfree_names = fold_proof_terms add_term_tfree_names add_typ_tfree_names; +val add_prf_tvar_ixns = fold_proof_terms add_term_tvar_ixns (add_typ_ixns o swap); + + +(***** utilities *****) + +fun strip_abs (_::Ts) (Abs (_, _, t)) = strip_abs Ts t + | strip_abs _ t = t; + +fun mk_abs Ts t = foldl (fn (t', T) => Abs ("", T, t')) (t, Ts); + + +(*Abstraction of a proof term over its occurrences of v, + which must contain no loose bound variables. + The resulting proof term is ready to become the body of an Abst.*) + +fun prf_abstract_over v = + let + fun abst' Ts t = strip_abs Ts (abstract_over (v, mk_abs Ts t)); + + fun abst Ts (AbsP (a, t, prf)) = AbsP (a, apsome (abst' Ts) t, abst Ts prf) + | abst Ts (Abst (a, T, prf)) = Abst (a, T, abst (dummyT::Ts) prf) + | abst Ts (prf1 % prf2) = abst Ts prf1 % abst Ts prf2 + | abst Ts (prf %% t) = abst Ts prf %% apsome (abst' Ts) t + | abst _ prf = prf + + in abst [] end; + + +(*increments a proof term's non-local bound variables + required when moving a proof term within abstractions + inc is increment for bound variables + lev is level at which a bound variable is considered 'loose'*) + +fun incr_bv' inct tlev t = incr_bv (inct, tlev, t); + +fun prf_incr_bv incP inct Plev tlev (u as PBound i) = if i>=Plev then PBound(i+incP) else u + | prf_incr_bv incP inct Plev tlev (AbsP (a, t, body)) = + AbsP (a, apsome (incr_bv' inct tlev) t, prf_incr_bv incP inct (Plev+1) tlev body) + | prf_incr_bv incP inct Plev tlev (Abst (a, T, body)) = + Abst (a, T, prf_incr_bv incP inct Plev (tlev+1) body) + | prf_incr_bv incP inct Plev tlev (prf % prf') = + prf_incr_bv incP inct Plev tlev prf % prf_incr_bv incP inct Plev tlev prf' + | prf_incr_bv incP inct Plev tlev (prf %% t) = + prf_incr_bv incP inct Plev tlev prf %% apsome (incr_bv' inct tlev) t + | prf_incr_bv _ _ _ _ prf = prf; + +fun incr_pboundvars 0 0 prf = prf + | incr_pboundvars incP inct prf = prf_incr_bv incP inct 0 0 prf; + + +fun prf_loose_bvar1 (prf1 % prf2) k = prf_loose_bvar1 prf1 k orelse prf_loose_bvar1 prf2 k + | prf_loose_bvar1 (prf %% Some t) k = prf_loose_bvar1 prf k orelse loose_bvar1 (t, k) + | prf_loose_bvar1 (_ %% None) _ = true + | prf_loose_bvar1 (AbsP (_, Some t, prf)) k = loose_bvar1 (t, k) orelse prf_loose_bvar1 prf k + | prf_loose_bvar1 (AbsP (_, None, _)) k = true + | prf_loose_bvar1 (Abst (_, _, prf)) k = prf_loose_bvar1 prf (k+1) + | prf_loose_bvar1 _ _ = false; + +fun prf_loose_Pbvar1 (PBound i) k = i = k + | prf_loose_Pbvar1 (prf1 % prf2) k = prf_loose_Pbvar1 prf1 k orelse prf_loose_Pbvar1 prf2 k + | prf_loose_Pbvar1 (prf %% _) k = prf_loose_Pbvar1 prf k + | prf_loose_Pbvar1 (AbsP (_, _, prf)) k = prf_loose_Pbvar1 prf (k+1) + | prf_loose_Pbvar1 (Abst (_, _, prf)) k = prf_loose_Pbvar1 prf k + | prf_loose_Pbvar1 _ _ = false; + + +(**** substitutions ****) + +local open Envir in + +fun apsome' f None = raise SAME + | apsome' f (Some x) = Some (f x); + +fun norm_proof env = + let + fun norm (Abst (s, T, prf)) = (Abst (s, apsome' (norm_type_same env) T, normh prf) + handle SAME => Abst (s, T, norm prf)) + | norm (AbsP (s, t, prf)) = (AbsP (s, apsome' (norm_term_same env) t, normh prf) + handle SAME => AbsP (s, t, norm prf)) + | norm (prf %% t) = (norm prf %% apsome (norm_term env) t + handle SAME => prf %% apsome' (norm_term_same env) t) + | norm (prf1 % prf2) = (norm prf1 % normh prf2 + handle SAME => prf1 % norm prf2) + | norm (PThm (s, prf, t, Ts)) = PThm (s, prf, t, apsome' (norm_types_same env) Ts) + | norm (PAxm (s, prop, Ts)) = PAxm (s, prop, apsome' (norm_types_same env) Ts) + | norm _ = raise SAME + and normh prf = (norm prf handle SAME => prf); + in normh end; + +(***** Remove some types in proof term (to save space) *****) + +fun remove_types (Abs (s, _, t)) = Abs (s, dummyT, remove_types t) + | remove_types (t $ u) = remove_types t $ remove_types u + | remove_types (Const (s, _)) = Const (s, dummyT) + | remove_types t = t; + +fun remove_types_env (Envir.Envir {iTs, asol, maxidx}) = + Envir.Envir {iTs = iTs, asol = Vartab.map remove_types asol, maxidx = maxidx}; + +fun norm_proof' env prf = norm_proof (remove_types_env env) prf; + +(**** substitution of bound variables ****) + +fun prf_subst_bounds args prf = + let + val n = length args; + fun subst' lev (Bound i) = + (if i Bound (i-n) (*loose: change it*)) + | subst' lev (Abs (a, T, body)) = Abs (a, T, subst' (lev+1) body) + | subst' lev (f $ t) = (subst' lev f $ substh' lev t + handle SAME => f $ subst' lev t) + | subst' _ _ = raise SAME + and substh' lev t = (subst' lev t handle SAME => t); + + fun subst lev (AbsP (a, t, body)) = (AbsP (a, apsome' (subst' lev) t, substh lev body) + handle SAME => AbsP (a, t, subst lev body)) + | subst lev (Abst (a, T, body)) = Abst (a, T, subst (lev+1) body) + | subst lev (prf % prf') = (subst lev prf % substh lev prf' + handle SAME => prf % subst lev prf') + | subst lev (prf %% t) = (subst lev prf %% apsome (substh' lev) t + handle SAME => prf %% apsome' (subst' lev) t) + | subst _ _ = raise SAME + and substh lev prf = (subst lev prf handle SAME => prf) + in case args of [] => prf | _ => substh 0 prf end; + +fun prf_subst_pbounds args prf = + let + val n = length args; + fun subst (PBound i) Plev tlev = + (if i < Plev then raise SAME (*var is locally bound*) + else incr_pboundvars Plev tlev (List.nth (args, i-Plev)) + handle Subscript => PBound (i-n) (*loose: change it*)) + | subst (AbsP (a, t, body)) Plev tlev = AbsP (a, t, subst body (Plev+1) tlev) + | subst (Abst (a, T, body)) Plev tlev = Abst (a, T, subst body Plev (tlev+1)) + | subst (prf % prf') Plev tlev = (subst prf Plev tlev % substh prf' Plev tlev + handle SAME => prf % subst prf' Plev tlev) + | subst (prf %% t) Plev tlev = subst prf Plev tlev %% t + | subst prf _ _ = raise SAME + and substh prf Plev tlev = (subst prf Plev tlev handle SAME => prf) + in case args of [] => prf | _ => substh prf 0 0 end; + +end; + + +(**** Freezing and thawing of variables in proof terms ****) + +fun frzT names = + map_type_tvar (fn (ixn, xs) => TFree (the (assoc (names, ixn)), xs)); + +fun thawT names = + map_type_tfree (fn (s, xs) => case assoc (names, s) of + None => TFree (s, xs) + | Some ixn => TVar (ixn, xs)); + +fun freeze names names' (t $ u) = + freeze names names' t $ freeze names names' u + | freeze names names' (Abs (s, T, t)) = + Abs (s, frzT names' T, freeze names names' t) + | freeze names names' (Const (s, T)) = Const (s, frzT names' T) + | freeze names names' (Free (s, T)) = Free (s, frzT names' T) + | freeze names names' (Var (ixn, T)) = + Free (the (assoc (names, ixn)), frzT names' T) + | freeze names names' t = t; + +fun thaw names names' (t $ u) = + thaw names names' t $ thaw names names' u + | thaw names names' (Abs (s, T, t)) = + Abs (s, thawT names' T, thaw names names' t) + | thaw names names' (Const (s, T)) = Const (s, thawT names' T) + | thaw names names' (Free (s, T)) = + let val T' = thawT names' T + in case assoc (names, s) of + None => Free (s, T') + | Some ixn => Var (ixn, T') + end + | thaw names names' (Var (ixn, T)) = Var (ixn, thawT names' T) + | thaw names names' t = t; + +fun freeze_thaw_prf prf = + let + val (fs, Tfs, vs, Tvs) = fold_proof_terms + (fn (t, (fs, Tfs, vs, Tvs)) => + (add_term_frees (t, fs), add_term_tfree_names (t, Tfs), + add_term_vars (t, vs), add_term_tvar_ixns (t, Tvs))) + (fn (T, (fs, Tfs, vs, Tvs)) => + (fs, add_typ_tfree_names (T, Tfs), + vs, add_typ_ixns (Tvs, T))) + (([], [], [], []), prf); + val fs' = map (fst o dest_Free) fs; + val vs' = map (fst o dest_Var) vs; + val names = vs' ~~ variantlist (map fst vs', fs'); + val names' = Tvs ~~ variantlist (map fst Tvs, Tfs); + val rnames = map swap names; + val rnames' = map swap names'; + in + (map_proof_terms (freeze names names') (frzT names') prf, + map_proof_terms (thaw rnames rnames') (thawT rnames')) + end; + + +(***** implication introduction *****) + +fun implies_intr_proof h prf = + let + fun abshyp i (Hyp t) = if h aconv t then PBound i else Hyp t + | abshyp i (Abst (s, T, prf)) = Abst (s, T, abshyp i prf) + | abshyp i (AbsP (s, t, prf)) = AbsP (s, t, abshyp (i+1) prf) + | abshyp i (prf %% t) = abshyp i prf %% t + | abshyp i (prf1 % prf2) = abshyp i prf1 % abshyp i prf2 + | abshyp _ prf = prf; + in + AbsP ("H", None (*h*), abshyp 0 prf) + end; + + +(***** forall introduction *****) + +fun forall_intr_proof x a prf = Abst (a, None, prf_abstract_over x prf); + + +(***** varify *****) + +fun varify_proof t fixed prf = + let + val fs = add_term_tfree_names (t, []) \\ fixed; + val ixns = add_term_tvar_ixns (t, []); + val fmap = fs ~~ variantlist (fs, map #1 ixns) + fun thaw (f as (a, S)) = + (case assoc (fmap, a) of + None => TFree f + | Some b => TVar ((b, 0), S)); + in map_proof_terms (map_term_types (map_type_tfree thaw)) (map_type_tfree thaw) prf + end; + + +local + +fun new_name (ix, (pairs,used)) = + let val v = variant used (string_of_indexname ix) + in ((ix, v) :: pairs, v :: used) end; + +fun freeze_one alist (ix, sort) = (case assoc (alist, ix) of + None => TVar (ix, sort) + | Some name => TFree (name, sort)); + +in + +fun freezeT t prf = + let + val used = it_term_types add_typ_tfree_names (t, []) + and tvars = map #1 (it_term_types add_typ_tvars (t, [])); + val (alist, _) = foldr new_name (tvars, ([], used)); + in + (case alist of + [] => prf (*nothing to do!*) + | _ => + let val frzT = map_type_tvar (freeze_one alist) + in map_proof_terms (map_term_types frzT) frzT prf end) + end; + +end; + + +(***** rotate assumptions *****) + +fun rotate_proof Bs Bi m prf = + let + val params = Term.strip_all_vars Bi; + val asms = Logic.strip_imp_prems (Term.strip_all_body Bi); + val i = length asms; + val j = length Bs; + in + mk_AbsP (j+1, proof_combP (prf, map PBound + (j downto 1) @ [mk_Abst (params, mk_AbsP (i, + proof_combP (proof_combt (PBound i, map Bound ((length params - 1) downto 0)), + map PBound (((i-m-1) downto 0) @ ((i-1) downto (i-m))))))])) + end; + + +(***** permute premises *****) + +fun permute_prems_prf prems j k prf = + let val n = length prems + in mk_AbsP (n, proof_combP (prf, + map PBound ((n-1 downto n-j) @ (k-1 downto 0) @ (n-j-1 downto k)))) + end; + + +(***** instantiation *****) + +fun instantiate vTs tpairs = + map_proof_terms (subst_atomic (map (apsnd remove_types) tpairs) o + subst_TVars vTs) (typ_subst_TVars vTs); + + +(***** lifting *****) + +fun lift_proof Bi inc prop prf = + let + val (_, lift_all) = Logic.lift_fns (Bi, inc); + + fun lift'' Us Ts t = strip_abs Ts (Logic.incr_indexes (Us, inc) (mk_abs Ts t)); + + fun lift' Us Ts (Abst (s, T, prf)) = Abst (s, apsome (incr_tvar inc) T, lift' Us (dummyT::Ts) prf) + | lift' Us Ts (AbsP (s, t, prf)) = AbsP (s, apsome (lift'' Us Ts) t, lift' Us Ts prf) + | lift' Us Ts (prf %% t) = lift' Us Ts prf %% apsome (lift'' Us Ts) t + | lift' Us Ts (prf1 % prf2) = lift' Us Ts prf1 % lift' Us Ts prf2 + | lift' _ _ (PThm (s, prf, prop, Ts)) = PThm (s, prf, prop, apsome (map (incr_tvar inc)) Ts) + | lift' _ _ (PAxm (s, prop, Ts)) = PAxm (s, prop, apsome (map (incr_tvar inc)) Ts) + | lift' _ _ prf = prf; + + val ps = map lift_all (Logic.strip_imp_prems (snd (Logic.strip_flexpairs prop))); + val k = length ps; + + fun mk_app (b, (i, j, prf)) = + if b then (i-1, j, prf % PBound i) else (i, j-1, prf %%% Bound j); + + fun lift Us bs i j (Const ("==>", _) $ A $ B) = + AbsP ("H", None (*A*), lift Us (true::bs) (i+1) j B) + | lift Us bs i j (Const ("all", _) $ Abs (a, T, t)) = + Abst (a, None (*T*), lift (T::Us) (false::bs) i (j+1) t) + | lift Us bs i j _ = proof_combP (lift' (rev Us) [] prf, + map (fn k => (#3 (foldr mk_app (bs, (i-1, j-1, PBound k))))) + (i + k - 1 downto i)); + in + mk_AbsP (k, lift [] [] 0 0 Bi) + end; + + +(***** proof by assumption *****) + +fun mk_asm_prf (Const ("==>", _) $ A $ B) i = AbsP ("H", None (*A*), mk_asm_prf B (i+1)) + | mk_asm_prf (Const ("all", _) $ Abs (a, T, t)) i = Abst (a, None (*T*), mk_asm_prf t i) + | mk_asm_prf _ i = PBound i; + +fun assumption_proof Bs Bi n prf = + mk_AbsP (length Bs, proof_combP (prf, + map PBound (length Bs - 1 downto 0) @ [mk_asm_prf Bi (~n)])); + + +(***** Composition of object rule with proof state *****) + +fun flatten_params_proof i j n (Const ("==>", _) $ A $ B, k) = + AbsP ("H", None (*A*), flatten_params_proof (i+1) j n (B, k)) + | flatten_params_proof i j n (Const ("all", _) $ Abs (a, T, t), k) = + Abst (a, None (*T*), flatten_params_proof i (j+1) n (t, k)) + | flatten_params_proof i j n (_, k) = proof_combP (proof_combt (PBound (k+i), + map Bound (j-1 downto 0)), map PBound (i-1 downto 0 \ i-n)); + +fun bicompose_proof Bs oldAs newAs A n rprf sprf = + let + val la = length newAs; + val lb = length Bs; + in + mk_AbsP (lb+la, proof_combP (sprf, + map PBound (lb + la - 1 downto la)) % + proof_combP (rprf, (if n>0 then [mk_asm_prf (the A) (~n)] else []) @ + map (flatten_params_proof 0 0 n) (oldAs ~~ (la - 1 downto 0)))) + end; + + +(***** axioms for equality *****) + +val aT = TFree ("'a", ["logic"]); +val bT = TFree ("'b", ["logic"]); +val x = Free ("x", aT); +val y = Free ("y", aT); +val z = Free ("z", aT); +val A = Free ("A", propT); +val B = Free ("B", propT); +val f = Free ("f", aT --> bT); +val g = Free ("g", aT --> bT); + +local open Logic in + +val equality_axms = + [("reflexive", mk_equals (x, x)), + ("symmetric", mk_implies (mk_equals (x, y), mk_equals (y, x))), + ("transitive", list_implies ([mk_equals (x, y), mk_equals (y, z)], mk_equals (x, z))), + ("equal_intr", list_implies ([mk_implies (A, B), mk_implies (B, A)], mk_equals (A, B))), + ("equal_elim", list_implies ([mk_equals (A, B), A], B)), + ("abstract_rule", Logic.mk_implies + (all aT $ Abs ("x", aT, equals bT $ (f $ Bound 0) $ (g $ Bound 0)), + equals (aT --> bT) $ + Abs ("x", aT, f $ Bound 0) $ Abs ("x", aT, g $ Bound 0))), + ("combination", Logic.list_implies + ([Logic.mk_equals (f, g), Logic.mk_equals (x, y)], + Logic.mk_equals (f $ x, g $ y)))]; + +val [reflexive_axm, symmetric_axm, transitive_axm, equal_intr_axm, + equal_elim_axm, abstract_rule_axm, combination_axm] = + map (fn (s, t) => PAxm ("ProtoPure." ^ s, varify t, None)) equality_axms; + +end; + +val reflexive = reflexive_axm %% None; + +fun symmetric (prf as PAxm ("ProtoPure.reflexive", _, _) %% _) = prf + | symmetric prf = symmetric_axm %% None %% None % prf; + +fun transitive _ _ (PAxm ("ProtoPure.reflexive", _, _) %% _) prf2 = prf2 + | transitive _ _ prf1 (PAxm ("ProtoPure.reflexive", _, _) %% _) = prf1 + | transitive u (Type ("prop", [])) prf1 prf2 = + transitive_axm %% None %% Some (remove_types u) %% None % prf1 % prf2 + | transitive u T prf1 prf2 = + transitive_axm %% None %% None %% None % prf1 % prf2; + +fun abstract_rule x a prf = + abstract_rule_axm %% None %% None % forall_intr_proof x a prf; + +fun check_comb (PAxm ("ProtoPure.combination", _, _) %% f %% g %% _ %% _ % prf % _) = + is_some f orelse check_comb prf + | check_comb (PAxm ("ProtoPure.transitive", _, _) %% _ %% _ %% _ % prf1 % prf2) = + check_comb prf1 andalso check_comb prf2 + | check_comb (PAxm ("ProtoPure.symmetric", _, _) %% _ %% _ % prf) = check_comb prf + | check_comb _ = false; + +fun combination f g t u (Type (_, [T, U])) prf1 prf2 = + let + val f = Envir.beta_norm f; + val g = Envir.beta_norm g; + val prf = if check_comb prf1 then + combination_axm %% None %% None + else (case prf1 of + PAxm ("ProtoPure.reflexive", _, _) %% _ => + combination_axm %%% remove_types f %% None + | _ => combination_axm %%% remove_types f %%% remove_types g) + in + (case T of + Type ("fun", _) => prf %% + (case head_of f of + Abs _ => Some (remove_types t) + | Var _ => Some (remove_types t) + | _ => None) %% + (case head_of g of + Abs _ => Some (remove_types u) + | Var _ => Some (remove_types u) + | _ => None) % prf1 % prf2 + | _ => prf %% None %% None % prf1 % prf2) + end; + +fun equal_intr A B prf1 prf2 = + equal_intr_axm %%% remove_types A %%% remove_types B % prf1 % prf2; + +fun equal_elim A B prf1 prf2 = + equal_elim_axm %%% remove_types A %%% remove_types B % prf1 % prf2; + + +(***** axioms and theorems *****) + +fun vars_of t = rev (foldl_aterms + (fn (vs, v as Var _) => v ins vs | (vs, _) => vs) ([], t)); + +fun test_args _ [] = true + | test_args is (Bound i :: ts) = + not (i mem is) andalso test_args (i :: is) ts + | test_args _ _ = false; + +fun is_fun (Type ("fun", _)) = true + | is_fun (TVar _) = true + | is_fun _ = false; + +fun add_funvars Ts (vs, t) = + if is_fun (fastype_of1 (Ts, t)) then + vs union mapfilter (fn Var (ixn, T) => + if is_fun T then Some ixn else None | _ => None) (vars_of t) + else vs; + +fun add_npvars q p Ts (vs, Const ("==>", _) $ t $ u) = + add_npvars q p Ts (add_npvars q (not p) Ts (vs, t), u) + | add_npvars q p Ts (vs, Const ("all", Type (_, [Type (_, [T, _]), _])) $ t) = + add_npvars q p Ts (vs, if p andalso q then betapply (t, Var (("",0), T)) else t) + | add_npvars q p Ts (vs, t) = (case strip_comb t of + (Var (ixn, _), ts) => if test_args [] ts then vs + else foldl (add_npvars q p Ts) (overwrite (vs, + (ixn, foldl (add_funvars Ts) (if_none (assoc (vs, ixn)) [], ts))), ts) + | (Abs (_, T, u), ts) => foldl (add_npvars q p (T::Ts)) (vs, u :: ts) + | (_, ts) => foldl (add_npvars q p Ts) (vs, ts)); + +fun prop_vars (Const ("==>", _) $ P $ Q) = prop_vars P union prop_vars Q + | prop_vars (Const ("all", _) $ Abs (_, _, t)) = prop_vars t + | prop_vars t = (case strip_comb t of + (Var (ixn, _), _) => [ixn] | _ => []); + +fun is_proj t = + let + fun is_p i t = (case strip_comb t of + (Bound j, []) => false + | (Bound j, ts) => j >= i orelse exists (is_p i) ts + | (Abs (_, _, u), _) => is_p (i+1) u + | (_, ts) => exists (is_p i) ts) + in (case strip_abs_body t of + Bound _ => true + | t' => is_p 0 t') + end; + +fun needed_vars prop = + foldl op union ([], map op ins (add_npvars true true [] ([], prop))) union + prop_vars prop; + +fun gen_axm_proof c name prop = + let + val nvs = needed_vars prop; + val args = map (fn (v as Var (ixn, _)) => + if ixn mem nvs then Some v else None) (vars_of prop) @ + map Some (sort (make_ord atless) (term_frees prop)); + in + proof_combt' (c (name, prop, None), args) + end; + +val axm_proof = gen_axm_proof PAxm; +val oracle_proof = gen_axm_proof Oracle; + +fun shrink ls lev (prf as Abst (a, T, body)) = + let val (b, is, ch, body') = shrink ls (lev+1) body + in (b, is, ch, if ch then Abst (a, T, body') else prf) end + | shrink ls lev (prf as AbsP (a, t, body)) = + let val (b, is, ch, body') = shrink (lev::ls) lev body + in (b orelse 0 mem is, mapfilter (fn 0 => None | i => Some (i-1)) is, + ch, if ch then AbsP (a, t, body') else prf) + end + | shrink ls lev prf = + let val (is, ch, _, prf') = shrink' ls lev [] [] prf + in (false, is, ch, prf') end +and shrink' ls lev ts prfs (prf as prf1 % prf2) = + let + val p as (_, is', ch', prf') = shrink ls lev prf2; + val (is, ch, ts', prf'') = shrink' ls lev ts (p::prfs) prf1 + in (is union is', ch orelse ch', ts', + if ch orelse ch' then prf'' % prf' else prf) + end + | shrink' ls lev ts prfs (prf as prf1 %% t) = + let val (is, ch, (ch', t')::ts', prf') = shrink' ls lev (t::ts) prfs prf1 + in (is, ch orelse ch', ts', if ch orelse ch' then prf' %% t' else prf) end + | shrink' ls lev ts prfs (prf as PBound i) = + (if exists (fn Some (Bound j) => lev-j <= nth_elem (i, ls) | _ => true) ts + orelse exists #1 prfs then [i] else [], false, map (pair false) ts, prf) + | shrink' ls lev ts prfs (prf as Hyp _) = ([], false, map (pair false) ts, prf) + | shrink' ls lev ts prfs prf = + let + val prop = (case prf of PThm (_, _, prop, _) => prop | PAxm (_, prop, _) => prop + | Oracle (_, prop, _) => prop | _ => error "shrink: proof not in normal form"); + val vs = vars_of prop; + val ts' = take (length vs, ts) + val ts'' = drop (length vs, ts) + val insts = take (length ts', map (fst o dest_Var) vs) ~~ ts'; + val nvs = foldl (fn (ixns', (ixn, ixns)) => + ixn ins (case assoc (insts, ixn) of + Some (Some t) => if is_proj t then ixns union ixns' else ixns' + | _ => ixns union ixns')) + (needed prop ts'' prfs, add_npvars false true [] ([], prop)); + val insts' = map + (fn (ixn, x as Some _) => if ixn mem nvs then (false, x) else (true, None) + | (_, x) => (false, x)) insts + in ([], false, insts' @ map (pair false) ts'', prf) end +and needed (Const ("==>", _) $ t $ u) ts ((b, _, _, _)::prfs) = + (if b then map (fst o dest_Var) (vars_of t) else []) union needed u ts prfs + | needed (Var (ixn, _)) (_::_) _ = [ixn] + | needed _ _ _ = []; + + +(**** Simple first order matching functions for terms and proofs ****) + +exception PMatch; + +(** see pattern.ML **) + +fun fomatch Ts tmatch = + let + fun mtch (instsp as (tyinsts, insts)) = fn + (Var (ixn, T), t) => + (tmatch (tyinsts, fn () => (T, fastype_of1 (Ts, t))), (ixn, t)::insts) + | (Free (a, T), Free (b, U)) => + if a=b then (tmatch (tyinsts, K (T, U)), insts) else raise PMatch + | (Const (a, T), Const (b, U)) => + if a=b then (tmatch (tyinsts, K (T, U)), insts) else raise PMatch + | (f $ t, g $ u) => mtch (mtch instsp (f, g)) (t, u) + | _ => raise PMatch + in mtch end; + +fun match_proof Ts tmatch = + let + fun mtch (inst as (pinst, tinst as (tyinsts, insts))) = fn + (Hyp (Var (ixn, _)), prf) => ((ixn, prf)::pinst, tinst) + | (prf1 %% opt1, prf2 %% opt2) => + let val inst' as (pinst, tinst) = mtch inst (prf1, prf2) + in (case (opt1, opt2) of + (None, _) => inst' + | (Some _, None) => raise PMatch + | (Some t, Some u) => (pinst, fomatch Ts tmatch tinst (t, Envir.beta_norm u))) + end + | (prf1 % prf2, prf1' % prf2') => + mtch (mtch inst (prf1, prf1')) (prf2, prf2') + | (PThm ((name1, _), _, prop1, None), PThm ((name2, _), _, prop2, _)) => + if name1=name2 andalso prop1=prop2 then inst else raise PMatch + | (PThm ((name1, _), _, prop1, Some Ts), PThm ((name2, _), _, prop2, Some Us)) => + if name1=name2 andalso prop1=prop2 then + (pinst, (foldl (tmatch o apsnd K) (tyinsts, Ts ~~ Us), insts)) + else raise PMatch + | (PAxm (s1, _, None), PAxm (s2, _, _)) => + if s1=s2 then inst else raise PMatch + | (PAxm (s1, _, Some Ts), PAxm (s2, _, Some Us)) => + if s1=s2 then + (pinst, (foldl (tmatch o apsnd K) (tyinsts, Ts ~~ Us), insts)) + else raise PMatch + | _ => raise PMatch + in mtch end; + +fun prf_subst (pinst, (tyinsts, insts)) = + let + val substT = typ_subst_TVars_Vartab tyinsts; + + fun subst' lev (t as Var (ixn, _)) = (case assoc (insts, ixn) of + None => t + | Some u => incr_boundvars lev u) + | subst' lev (Const (s, T)) = Const (s, substT T) + | subst' lev (Free (s, T)) = Free (s, substT T) + | subst' lev (Abs (a, T, body)) = Abs (a, substT T, subst' (lev+1) body) + | subst' lev (f $ t) = subst' lev f $ subst' lev t + | subst' _ t = t; + + fun subst plev tlev (AbsP (a, t, body)) = + AbsP (a, apsome (subst' tlev) t, subst (plev+1) tlev body) + | subst plev tlev (Abst (a, T, body)) = + Abst (a, apsome substT T, subst plev (tlev+1) body) + | subst plev tlev (prf % prf') = subst plev tlev prf % subst plev tlev prf' + | subst plev tlev (prf %% t) = subst plev tlev prf %% apsome (subst' tlev) t + | subst plev tlev (prf as Hyp (Var (ixn, _))) = (case assoc (pinst, ixn) of + None => prf + | Some prf' => incr_pboundvars plev tlev prf') + | subst _ _ (PThm (id, prf, prop, Ts)) = + PThm (id, prf, prop, apsome (map substT) Ts) + | subst _ _ (PAxm (id, prop, Ts)) = + PAxm (id, prop, apsome (map substT) Ts) + | subst _ _ t = t + in subst 0 0 end; + +(**** rewriting on proof terms ****) + +fun rewrite_prf tmatch (rules, procs) prf = + let + fun rew _ (Abst (_, _, body) %% Some t) = Some (prf_subst_bounds [t] body) + | rew _ (AbsP (_, _, body) % prf) = Some (prf_subst_pbounds [prf] body) + | rew Ts prf = (case get_first (fn (_, r) => r Ts prf) procs of + Some prf' => Some prf' + | None => get_first (fn (prf1, prf2) => Some (prf_subst + (match_proof Ts tmatch ([], (Vartab.empty, [])) (prf1, prf)) prf2) + handle PMatch => None) rules); + + fun rew0 Ts (prf as AbsP (_, _, prf' % PBound 0)) = + if prf_loose_Pbvar1 prf' 0 then rew Ts prf + else + let val prf'' = incr_pboundvars (~1) 0 prf' + in Some (if_none (rew Ts prf'') prf'') end + | rew0 Ts (prf as Abst (_, _, prf' %% Some (Bound 0))) = + if prf_loose_bvar1 prf' 0 then rew Ts prf + else + let val prf'' = incr_pboundvars 0 (~1) prf' + in Some (if_none (rew Ts prf'') prf'') end + | rew0 Ts prf = rew Ts prf; + + fun rew1 Ts prf = (case rew2 Ts prf of + Some prf1 => (case rew0 Ts prf1 of + Some prf2 => Some (if_none (rew1 Ts prf2) prf2) + | None => Some prf1) + | None => (case rew0 Ts prf of + Some prf1 => Some (if_none (rew1 Ts prf1) prf1) + | None => None)) + + and rew2 Ts (prf %% Some t) = (case prf of + Abst (_, _, body) => + let val prf' = prf_subst_bounds [t] body + in Some (if_none (rew2 Ts prf') prf') end + | _ => (case rew1 Ts prf of + Some prf' => Some (prf' %% Some t) + | None => None)) + | rew2 Ts (prf %% None) = apsome (fn prf' => prf' %% None) (rew1 Ts prf) + | rew2 Ts (prf1 % prf2) = (case prf1 of + AbsP (_, _, body) => + let val prf' = prf_subst_pbounds [prf2] body + in Some (if_none (rew2 Ts prf') prf') end + | _ => (case rew1 Ts prf1 of + Some prf1' => (case rew1 Ts prf2 of + Some prf2' => Some (prf1' % prf2') + | None => Some (prf1' % prf2)) + | None => (case rew1 Ts prf2 of + Some prf2' => Some (prf1 % prf2') + | None => None))) + | rew2 Ts (Abst (s, T, prf)) = (case rew1 (if_none T dummyT :: Ts) prf of + Some prf' => Some (Abst (s, T, prf')) + | None => None) + | rew2 Ts (AbsP (s, t, prf)) = (case rew1 Ts prf of + Some prf' => Some (AbsP (s, t, prf')) + | None => None) + | rew2 _ _ = None + + in if_none (rew1 [] prf) prf end; + +fun rewrite_proof tsig = rewrite_prf (fn (tab, f) => + Type.typ_match tsig (tab, f ()) handle Type.TYPE_MATCH => raise PMatch); + +(**** theory data ****) + +(* data kind 'Pure/proof' *) + +structure ProofArgs = +struct + val name = "Pure/proof"; + type T = ((proof * proof) list * + (string * (typ list -> proof -> proof option)) list) ref; + + val empty = (ref ([], [])): T; + fun copy (ref rews) = (ref rews): T; (*create new reference!*) + val prep_ext = copy; + fun merge (ref (rules1, procs1), ref (rules2, procs2)) = ref + (merge_lists rules1 rules2, + generic_merge (uncurry equal o pairself fst) I I procs1 procs2); + fun print _ _ = (); +end; + +structure ProofData = TheoryDataFun(ProofArgs); + +val init = ProofData.init; + +fun add_prf_rrules thy rs = + let val r = ProofData.get thy + in r := (rs @ fst (!r), snd (!r)) end; + +fun add_prf_rprocs thy ps = + let val r = ProofData.get thy + in r := (fst (!r), ps @ snd (!r)) end; + +fun thm_proof sign (name, tags) hyps prop prf = + let + val hyps' = gen_distinct op aconv hyps; + val prop = Logic.list_implies (hyps', prop); + val nvs = needed_vars prop; + val args = map (fn (v as Var (ixn, _)) => + if ixn mem nvs then Some v else None) (vars_of prop) @ + map Some (sort (make_ord atless) (term_frees prop)); + val opt_prf = if !keep_derivs=FullDeriv then + #4 (shrink [] 0 (rewrite_prf fst (!(ProofData.get_sg sign)) + (foldr (uncurry implies_intr_proof) (hyps', prf)))) + else MinProof (mk_min_proof ([], prf)); + val head = (case strip_combt (fst (strip_combP prf)) of + (PThm ((old_name, _), prf', prop', None), args') => + if (old_name="" orelse old_name=name) andalso + prop = prop' andalso args = args' then + PThm ((name, tags), prf', prop, None) + else + PThm ((name, tags), opt_prf, prop, None) + | _ => PThm ((name, tags), opt_prf, prop, None)) + in + proof_combP (proof_combt' (head, args), map Hyp hyps') + end; + +fun get_name_tags prop prf = (case strip_combt (fst (strip_combP prf)) of + (PThm ((name, tags), _, prop', _), _) => + if prop=prop' then (name, tags) else ("", []) + | (PAxm (name, prop', _), _) => + if prop=prop' then (name, []) else ("", []) + | _ => ("", [])); + +end; + +structure BasicProofterm : BASIC_PROOFTERM = Proofterm; +open BasicProofterm;