# HG changeset patch # User huffman # Date 1313011556 25200 # Node ID 0c9feac80852253733319b28f0031b1ac25b979f # Parent ac5cb4c864487e9f91db47bf98accd42c44256fb simplify proof of lemma bounded_component diff -r ac5cb4c86448 -r 0c9feac80852 src/HOL/Multivariate_Analysis/Topology_Euclidean_Space.thy --- a/src/HOL/Multivariate_Analysis/Topology_Euclidean_Space.thy Wed Aug 10 14:10:52 2011 -0700 +++ b/src/HOL/Multivariate_Analysis/Topology_Euclidean_Space.thy Wed Aug 10 14:25:56 2011 -0700 @@ -2228,15 +2228,10 @@ by auto qed -lemma bounded_component: "bounded s \ - bounded ((\x. x $$ i) ` (s::'a::euclidean_space set))" -unfolding bounded_def -apply clarify -apply (rule_tac x="x $$ i" in exI) -apply (rule_tac x="e" in exI) -apply clarify -apply (rule order_trans[OF dist_nth_le],simp) -done +lemma bounded_component: "bounded s \ bounded ((\x. x $$ i) ` s)" + apply (erule bounded_linear_image) + apply (rule bounded_linear_euclidean_component) + done lemma compact_lemma: fixes f :: "nat \ 'a::euclidean_space"