# HG changeset patch # User paulson # Date 1077550546 -3600 # Node ID 0cc42bb96330e95c221bc32da6ea886b928bdb59 # Parent 043bf0d9e9b528f1232372e9b06986f75332d102 converted HOL/Complex/NSCA to Isar script diff -r 043bf0d9e9b5 -r 0cc42bb96330 src/HOL/Complex/NSCA.thy --- a/src/HOL/Complex/NSCA.thy Sat Feb 21 20:05:16 2004 +0100 +++ b/src/HOL/Complex/NSCA.thy Mon Feb 23 16:35:46 2004 +0100 @@ -1,44 +1,1461 @@ (* Title : NSCA.thy Author : Jacques D. Fleuriot Copyright : 2001,2002 University of Edinburgh - Description : Infinite, infinitesimal complex number etc! *) -NSCA = NSComplex + +header{*Non-Standard Complex Analysis*} -consts +theory NSCA = NSComplex: - (* infinitely close *) - "@c=" :: [hcomplex,hcomplex] => bool (infixl 50) +constdefs + capprox :: "[hcomplex,hcomplex] => bool" (infixl "@c=" 50) + --{*the ``infinitely close'' relation*} + "x @c= y == (x - y) \ CInfinitesimal" -constdefs (* standard complex numbers reagarded as an embedded subset of NS complex *) SComplex :: "hcomplex set" - "SComplex == {x. EX r. x = hcomplex_of_complex r}" + "SComplex == {x. \r. x = hcomplex_of_complex r}" CInfinitesimal :: "hcomplex set" - "CInfinitesimal == {x. ALL r: Reals. 0 < r --> hcmod x < r}" + "CInfinitesimal == {x. \r \ Reals. 0 < r --> hcmod x < r}" CFinite :: "hcomplex set" - "CFinite == {x. EX r: Reals. hcmod x < r}" + "CFinite == {x. \r \ Reals. hcmod x < r}" CInfinite :: "hcomplex set" - "CInfinite == {x. ALL r: Reals. r < hcmod x}" + "CInfinite == {x. \r \ Reals. r < hcmod x}" - (* standard part map *) - stc :: hcomplex => hcomplex - "stc x == (@r. x : CFinite & r:SComplex & r @c= x)" + stc :: "hcomplex => hcomplex" + --{* standard part map*} + "stc x == (@r. x \ CFinite & r:SComplex & r @c= x)" - cmonad :: hcomplex => hcomplex set + cmonad :: "hcomplex => hcomplex set" "cmonad x == {y. x @c= y}" - cgalaxy :: hcomplex => hcomplex set - "cgalaxy x == {y. (x - y) : CFinite}" + cgalaxy :: "hcomplex => hcomplex set" + "cgalaxy x == {y. (x - y) \ CFinite}" + + + +subsection{*Closure Laws for SComplex, the Standard Complex Numbers*} + +lemma SComplex_add: "[| x \ SComplex; y \ SComplex |] ==> x + y \ SComplex" +apply (simp add: SComplex_def, safe) +apply (rule_tac x = "r + ra" in exI, simp) +done + +lemma SComplex_mult: "[| x \ SComplex; y \ SComplex |] ==> x * y \ SComplex" +apply (simp add: SComplex_def, safe) +apply (rule_tac x = "r * ra" in exI, simp) +done + +lemma SComplex_inverse: "x \ SComplex ==> inverse x \ SComplex" +apply (simp add: SComplex_def) +apply (blast intro: hcomplex_of_complex_inverse [symmetric]) +done + +lemma SComplex_divide: "[| x \ SComplex; y \ SComplex |] ==> x/y \ SComplex" +by (simp add: SComplex_mult SComplex_inverse divide_inverse_zero) + +lemma SComplex_minus: "x \ SComplex ==> -x \ SComplex" +apply (simp add: SComplex_def) +apply (blast intro: hcomplex_of_complex_minus [symmetric]) +done + +lemma SComplex_minus_iff [simp]: "(-x \ SComplex) = (x \ SComplex)" +apply auto +apply (erule_tac [2] SComplex_minus) +apply (drule SComplex_minus, auto) +done + +lemma SComplex_diff: "[| x \ SComplex; y \ SComplex |] ==> x - y \ SComplex" +by (simp add: diff_minus SComplex_add) + +lemma SComplex_add_cancel: + "[| x + y \ SComplex; y \ SComplex |] ==> x \ SComplex" +by (drule SComplex_diff, assumption, simp) + +lemma SReal_hcmod_hcomplex_of_complex [simp]: + "hcmod (hcomplex_of_complex r) \ Reals" +by (simp add: hcomplex_of_complex_def hcmod SReal_def hypreal_of_real_def) + +lemma SReal_hcmod_number_of [simp]: "hcmod (number_of w ::hcomplex) \ Reals" +apply (subst hcomplex_number_of [symmetric]) +apply (rule SReal_hcmod_hcomplex_of_complex) +done + +lemma SReal_hcmod_SComplex: "x \ SComplex ==> hcmod x \ Reals" +by (auto simp add: SComplex_def) + +lemma SComplex_hcomplex_of_complex [simp]: "hcomplex_of_complex x \ SComplex" +by (simp add: SComplex_def) + +lemma SComplex_number_of [simp]: "(number_of w ::hcomplex) \ SComplex" +apply (subst hcomplex_number_of [symmetric]) +apply (rule SComplex_hcomplex_of_complex) +done + +lemma SComplex_divide_number_of: + "r \ SComplex ==> r/(number_of w::hcomplex) \ SComplex" +apply (simp only: divide_inverse_zero) +apply (blast intro!: SComplex_number_of SComplex_mult SComplex_inverse) +done + +lemma SComplex_UNIV_complex: + "{x. hcomplex_of_complex x \ SComplex} = (UNIV::complex set)" +by (simp add: SComplex_def) + +lemma SComplex_iff: "(x \ SComplex) = (\y. x = hcomplex_of_complex y)" +by (simp add: SComplex_def) + +lemma hcomplex_of_complex_image: + "hcomplex_of_complex `(UNIV::complex set) = SComplex" +by (auto simp add: SComplex_def) + +lemma inv_hcomplex_of_complex_image: "inv hcomplex_of_complex `SComplex = UNIV" +apply (auto simp add: SComplex_def) +apply (rule inj_hcomplex_of_complex [THEN inv_f_f, THEN subst], blast) +done + +lemma SComplex_hcomplex_of_complex_image: + "[| \x. x: P; P \ SComplex |] ==> \Q. P = hcomplex_of_complex ` Q" +apply (simp add: SComplex_def, blast) +done + +lemma SComplex_SReal_dense: + "[| x \ SComplex; y \ SComplex; hcmod x < hcmod y + |] ==> \r \ Reals. hcmod x< r & r < hcmod y" +apply (auto intro: SReal_dense simp add: SReal_hcmod_SComplex) +done + +lemma SComplex_hcmod_SReal: + "z \ SComplex ==> hcmod z \ Reals" +apply (simp add: SComplex_def SReal_def) +apply (rule_tac z = z in eq_Abs_hcomplex) +apply (auto simp add: hcmod hypreal_of_real_def hcomplex_of_complex_def cmod_def) +apply (rule_tac x = "cmod r" in exI) +apply (simp add: cmod_def, ultra) +done + +lemma SComplex_zero [simp]: "0 \ SComplex" +by (simp add: SComplex_def hcomplex_of_complex_zero_iff) + +lemma SComplex_one [simp]: "1 \ SComplex" +by (simp add: SComplex_def hcomplex_of_complex_def hcomplex_one_def) + +(* +Goalw [SComplex_def,SReal_def] "hcmod z \ Reals ==> z \ SComplex" +by (res_inst_tac [("z","z")] eq_Abs_hcomplex 1); +by (auto_tac (claset(),simpset() addsimps [hcmod,hypreal_of_real_def, + hcomplex_of_complex_def,cmod_def])); +*) + + +subsection{*The Finite Elements form a Subring*} + +lemma CFinite_add: "[|x \ CFinite; y \ CFinite|] ==> (x+y) \ CFinite" +apply (simp add: CFinite_def) +apply (blast intro!: SReal_add hcmod_add_less) +done + +lemma CFinite_mult: "[|x \ CFinite; y \ CFinite|] ==> x*y \ CFinite" +apply (simp add: CFinite_def) +apply (blast intro!: SReal_mult hcmod_mult_less) +done + +lemma CFinite_minus_iff [simp]: "(-x \ CFinite) = (x \ CFinite)" +by (simp add: CFinite_def) + +lemma SComplex_subset_CFinite [simp]: "SComplex \ CFinite" +apply (auto simp add: SComplex_def CFinite_def) +apply (rule_tac x = "1 + hcmod (hcomplex_of_complex r) " in bexI) +apply (auto intro: SReal_add) +done + +lemma HFinite_hcmod_hcomplex_of_complex [simp]: + "hcmod (hcomplex_of_complex r) \ HFinite" +by (auto intro!: SReal_subset_HFinite [THEN subsetD]) + +lemma CFinite_hcomplex_of_complex [simp]: "hcomplex_of_complex x \ CFinite" +by (auto intro!: SComplex_subset_CFinite [THEN subsetD]) + +lemma CFiniteD: "x \ CFinite ==> \t \ Reals. hcmod x < t" +by (simp add: CFinite_def) + +lemma CFinite_hcmod_iff: "(x \ CFinite) = (hcmod x \ HFinite)" +by (simp add: CFinite_def HFinite_def) + +lemma CFinite_number_of [simp]: "number_of w \ CFinite" +by (rule SComplex_number_of [THEN SComplex_subset_CFinite [THEN subsetD]]) + +lemma CFinite_bounded: "[|x \ CFinite; y \ hcmod x; 0 \ y |] ==> y: HFinite" +by (auto intro: HFinite_bounded simp add: CFinite_hcmod_iff) + + +subsection{*The Complex Infinitesimals form a Subring*} + +lemma CInfinitesimal_zero [iff]: "0 \ CInfinitesimal" +by (simp add: CInfinitesimal_def) + +lemma hcomplex_sum_of_halves: "x/(2::hcomplex) + x/(2::hcomplex) = x" +by auto + +lemma CInfinitesimal_hcmod_iff: + "(z \ CInfinitesimal) = (hcmod z \ Infinitesimal)" +by (simp add: CInfinitesimal_def Infinitesimal_def) + +lemma one_not_CInfinitesimal [simp]: "1 \ CInfinitesimal" +by (simp add: CInfinitesimal_hcmod_iff) + +lemma CInfinitesimal_add: + "[| x \ CInfinitesimal; y \ CInfinitesimal |] ==> (x+y) \ CInfinitesimal" +apply (auto simp add: CInfinitesimal_hcmod_iff) +apply (rule hrabs_le_Infinitesimal) +apply (rule_tac y = "hcmod y" in Infinitesimal_add, auto) +done + +lemma CInfinitesimal_minus_iff [simp]: + "(-x:CInfinitesimal) = (x:CInfinitesimal)" +by (simp add: CInfinitesimal_def) + +lemma CInfinitesimal_diff: + "[| x \ CInfinitesimal; y \ CInfinitesimal |] ==> x-y \ CInfinitesimal" +by (simp add: diff_minus CInfinitesimal_add) + +lemma CInfinitesimal_mult: + "[| x \ CInfinitesimal; y \ CInfinitesimal |] ==> x * y \ CInfinitesimal" +by (auto intro: Infinitesimal_mult simp add: CInfinitesimal_hcmod_iff hcmod_mult) + +lemma CInfinitesimal_CFinite_mult: + "[| x \ CInfinitesimal; y \ CFinite |] ==> (x * y) \ CInfinitesimal" +by (auto intro: Infinitesimal_HFinite_mult simp add: CInfinitesimal_hcmod_iff CFinite_hcmod_iff hcmod_mult) + +lemma CInfinitesimal_CFinite_mult2: + "[| x \ CInfinitesimal; y \ CFinite |] ==> (y * x) \ CInfinitesimal" +by (auto dest: CInfinitesimal_CFinite_mult simp add: hcomplex_mult_commute) + +lemma CInfinite_hcmod_iff: "(z \ CInfinite) = (hcmod z \ HInfinite)" +by (simp add: CInfinite_def HInfinite_def) + +lemma CInfinite_inverse_CInfinitesimal: + "x \ CInfinite ==> inverse x \ CInfinitesimal" +by (auto intro: HInfinite_inverse_Infinitesimal simp add: CInfinitesimal_hcmod_iff CInfinite_hcmod_iff hcmod_hcomplex_inverse) + +lemma CInfinite_mult: "[|x \ CInfinite; y \ CInfinite|] ==> (x*y): CInfinite" +by (auto intro: HInfinite_mult simp add: CInfinite_hcmod_iff hcmod_mult) + +lemma CInfinite_minus_iff [simp]: "(-x \ CInfinite) = (x \ CInfinite)" +by (simp add: CInfinite_def) + +lemma CFinite_sum_squares: + "[|a \ CFinite; b \ CFinite; c \ CFinite|] + ==> a*a + b*b + c*c \ CFinite" +by (auto intro: CFinite_mult CFinite_add) + +lemma not_CInfinitesimal_not_zero: "x \ CInfinitesimal ==> x \ 0" +by auto + +lemma not_CInfinitesimal_not_zero2: "x \ CFinite - CInfinitesimal ==> x \ 0" +by auto + +lemma CFinite_diff_CInfinitesimal_hcmod: + "x \ CFinite - CInfinitesimal ==> hcmod x \ HFinite - Infinitesimal" +by (simp add: CFinite_hcmod_iff CInfinitesimal_hcmod_iff) + +lemma hcmod_less_CInfinitesimal: + "[| e \ CInfinitesimal; hcmod x < hcmod e |] ==> x \ CInfinitesimal" +by (auto intro: hrabs_less_Infinitesimal simp add: CInfinitesimal_hcmod_iff) + +lemma hcmod_le_CInfinitesimal: + "[| e \ CInfinitesimal; hcmod x \ hcmod e |] ==> x \ CInfinitesimal" +by (auto intro: hrabs_le_Infinitesimal simp add: CInfinitesimal_hcmod_iff) + +lemma CInfinitesimal_interval: + "[| e \ CInfinitesimal; + e' \ CInfinitesimal; + hcmod e' < hcmod x ; hcmod x < hcmod e + |] ==> x \ CInfinitesimal" +by (auto intro: Infinitesimal_interval simp add: CInfinitesimal_hcmod_iff) + +lemma CInfinitesimal_interval2: + "[| e \ CInfinitesimal; + e' \ CInfinitesimal; + hcmod e' \ hcmod x ; hcmod x \ hcmod e + |] ==> x \ CInfinitesimal" +by (auto intro: Infinitesimal_interval2 simp add: CInfinitesimal_hcmod_iff) + +lemma not_CInfinitesimal_mult: + "[| x \ CInfinitesimal; y \ CInfinitesimal|] ==> (x*y) \ CInfinitesimal" +apply (auto simp add: CInfinitesimal_hcmod_iff hcmod_mult) +apply (drule not_Infinitesimal_mult, auto) +done + +lemma CInfinitesimal_mult_disj: + "x*y \ CInfinitesimal ==> x \ CInfinitesimal | y \ CInfinitesimal" +by (auto dest: Infinitesimal_mult_disj simp add: CInfinitesimal_hcmod_iff hcmod_mult) + +lemma CFinite_CInfinitesimal_diff_mult: + "[| x \ CFinite - CInfinitesimal; y \ CFinite - CInfinitesimal |] + ==> x*y \ CFinite - CInfinitesimal" +by (blast dest: CFinite_mult not_CInfinitesimal_mult) + +lemma CInfinitesimal_subset_CFinite: "CInfinitesimal \ CFinite" +by (auto intro: Infinitesimal_subset_HFinite [THEN subsetD] + simp add: CInfinitesimal_hcmod_iff CFinite_hcmod_iff) + +lemma CInfinitesimal_hcomplex_of_complex_mult: + "x \ CInfinitesimal ==> x * hcomplex_of_complex r \ CInfinitesimal" +by (auto intro!: Infinitesimal_HFinite_mult simp add: CInfinitesimal_hcmod_iff hcmod_mult) + +lemma CInfinitesimal_hcomplex_of_complex_mult2: + "x \ CInfinitesimal ==> hcomplex_of_complex r * x \ CInfinitesimal" +by (auto intro!: Infinitesimal_HFinite_mult2 simp add: CInfinitesimal_hcmod_iff hcmod_mult) + + +subsection{*The ``Infinitely Close'' Relation*} + +(* +Goalw [capprox_def,approx_def] "(z @c= w) = (hcmod z @= hcmod w)" +by (auto_tac (claset(),simpset() addsimps [CInfinitesimal_hcmod_iff])); +*) + +lemma mem_cinfmal_iff: "x:CInfinitesimal = (x @c= 0)" +by (simp add: CInfinitesimal_hcmod_iff capprox_def) + +lemma capprox_minus_iff: "(x @c= y) = (x + -y @c= 0)" +by (simp add: capprox_def diff_minus) + +lemma capprox_minus_iff2: "(x @c= y) = (-y + x @c= 0)" +by (simp add: capprox_def diff_minus add_commute) + +lemma capprox_refl [simp]: "x @c= x" +by (simp add: capprox_def) + +lemma capprox_sym: "x @c= y ==> y @c= x" +by (simp add: capprox_def CInfinitesimal_def hcmod_diff_commute) + +lemma capprox_trans: "[| x @c= y; y @c= z |] ==> x @c= z" +apply (simp add: capprox_def) +apply (drule CInfinitesimal_add, assumption) +apply (simp add: diff_minus) +done + +lemma capprox_trans2: "[| r @c= x; s @c= x |] ==> r @c= s" +by (blast intro: capprox_sym capprox_trans) + +lemma capprox_trans3: "[| x @c= r; x @c= s|] ==> r @c= s" +by (blast intro: capprox_sym capprox_trans) + +lemma number_of_capprox_reorient [simp]: + "(number_of w @c= x) = (x @c= number_of w)" +by (blast intro: capprox_sym) + +lemma CInfinitesimal_capprox_minus: "(x-y \ CInfinitesimal) = (x @c= y)" +by (simp add: diff_minus capprox_minus_iff [symmetric] mem_cinfmal_iff) + +lemma capprox_monad_iff: "(x @c= y) = (cmonad(x)=cmonad(y))" +by (auto simp add: cmonad_def dest: capprox_sym elim!: capprox_trans equalityCE) + +lemma Infinitesimal_capprox: + "[| x \ CInfinitesimal; y \ CInfinitesimal |] ==> x @c= y" +apply (simp add: mem_cinfmal_iff) +apply (blast intro: capprox_trans capprox_sym) +done + +lemma capprox_add: "[| a @c= b; c @c= d |] ==> a+c @c= b+d" +apply (simp add: capprox_def diff_minus) +apply (rule minus_add_distrib [THEN ssubst]) +apply (rule add_assoc [THEN ssubst]) +apply (rule_tac b1 = c in add_left_commute [THEN subst]) +apply (rule add_assoc [THEN subst]) +apply (blast intro: CInfinitesimal_add) +done + +lemma capprox_minus: "a @c= b ==> -a @c= -b" +apply (rule capprox_minus_iff [THEN iffD2, THEN capprox_sym]) +apply (drule capprox_minus_iff [THEN iffD1]) +apply (simp add: add_commute) +done + +lemma capprox_minus2: "-a @c= -b ==> a @c= b" +by (auto dest: capprox_minus) + +lemma capprox_minus_cancel [simp]: "(-a @c= -b) = (a @c= b)" +by (blast intro: capprox_minus capprox_minus2) + +lemma capprox_add_minus: "[| a @c= b; c @c= d |] ==> a + -c @c= b + -d" +by (blast intro!: capprox_add capprox_minus) + +lemma capprox_mult1: + "[| a @c= b; c \ CFinite|] ==> a*c @c= b*c" +apply (simp add: capprox_def diff_minus) +apply (simp only: CInfinitesimal_CFinite_mult minus_mult_left hcomplex_add_mult_distrib [symmetric]) +done + +lemma capprox_mult2: "[|a @c= b; c \ CFinite|] ==> c*a @c= c*b" +by (simp add: capprox_mult1 hcomplex_mult_commute) + +lemma capprox_mult_subst: + "[|u @c= v*x; x @c= y; v \ CFinite|] ==> u @c= v*y" +by (blast intro: capprox_mult2 capprox_trans) + +lemma capprox_mult_subst2: + "[| u @c= x*v; x @c= y; v \ CFinite |] ==> u @c= y*v" +by (blast intro: capprox_mult1 capprox_trans) + +lemma capprox_mult_subst_SComplex: + "[| u @c= x*hcomplex_of_complex v; x @c= y |] + ==> u @c= y*hcomplex_of_complex v" +by (auto intro: capprox_mult_subst2) + +lemma capprox_eq_imp: "a = b ==> a @c= b" +by (simp add: capprox_def) + +lemma CInfinitesimal_minus_capprox: "x \ CInfinitesimal ==> -x @c= x" +by (blast intro: CInfinitesimal_minus_iff [THEN iffD2] mem_cinfmal_iff [THEN iffD1] capprox_trans2) + +lemma bex_CInfinitesimal_iff: "(\y \ CInfinitesimal. x - z = y) = (x @c= z)" +by (unfold capprox_def, blast) + +lemma bex_CInfinitesimal_iff2: "(\y \ CInfinitesimal. x = z + y) = (x @c= z)" +by (simp add: bex_CInfinitesimal_iff [symmetric], force) + +lemma CInfinitesimal_add_capprox: + "[| y \ CInfinitesimal; x + y = z |] ==> x @c= z" +apply (rule bex_CInfinitesimal_iff [THEN iffD1]) +apply (drule CInfinitesimal_minus_iff [THEN iffD2]) +apply (simp add: eq_commute compare_rls) +done + +lemma CInfinitesimal_add_capprox_self: "y \ CInfinitesimal ==> x @c= x + y" +apply (rule bex_CInfinitesimal_iff [THEN iffD1]) +apply (drule CInfinitesimal_minus_iff [THEN iffD2]) +apply (simp add: eq_commute compare_rls) +done + +lemma CInfinitesimal_add_capprox_self2: "y \ CInfinitesimal ==> x @c= y + x" +by (auto dest: CInfinitesimal_add_capprox_self simp add: add_commute) + +lemma CInfinitesimal_add_minus_capprox_self: + "y \ CInfinitesimal ==> x @c= x + -y" +by (blast intro!: CInfinitesimal_add_capprox_self CInfinitesimal_minus_iff [THEN iffD2]) + +lemma CInfinitesimal_add_cancel: + "[| y \ CInfinitesimal; x+y @c= z|] ==> x @c= z" +apply (drule_tac x = x in CInfinitesimal_add_capprox_self [THEN capprox_sym]) +apply (erule capprox_trans3 [THEN capprox_sym], assumption) +done + +lemma CInfinitesimal_add_right_cancel: + "[| y \ CInfinitesimal; x @c= z + y|] ==> x @c= z" +apply (drule_tac x = z in CInfinitesimal_add_capprox_self2 [THEN capprox_sym]) +apply (erule capprox_trans3 [THEN capprox_sym]) +apply (simp add: add_commute) +apply (erule capprox_sym) +done + +lemma capprox_add_left_cancel: "d + b @c= d + c ==> b @c= c" +apply (drule capprox_minus_iff [THEN iffD1]) +apply (simp add: minus_add_distrib capprox_minus_iff [symmetric] add_ac) +done + +lemma capprox_add_right_cancel: "b + d @c= c + d ==> b @c= c" +apply (rule capprox_add_left_cancel) +apply (simp add: add_commute) +done + +lemma capprox_add_mono1: "b @c= c ==> d + b @c= d + c" +apply (rule capprox_minus_iff [THEN iffD2]) +apply (simp add: capprox_minus_iff [symmetric] add_ac) +done + +lemma capprox_add_mono2: "b @c= c ==> b + a @c= c + a" +apply (simp (no_asm_simp) add: add_commute capprox_add_mono1) +done + +lemma capprox_add_left_iff [iff]: "(a + b @c= a + c) = (b @c= c)" +by (fast elim: capprox_add_left_cancel capprox_add_mono1) + +lemma capprox_add_right_iff [iff]: "(b + a @c= c + a) = (b @c= c)" +by (simp add: add_commute) + +lemma capprox_CFinite: "[| x \ CFinite; x @c= y |] ==> y \ CFinite" +apply (drule bex_CInfinitesimal_iff2 [THEN iffD2], safe) +apply (drule CInfinitesimal_subset_CFinite [THEN subsetD, THEN CFinite_minus_iff [THEN iffD2]]) +apply (drule CFinite_add) +apply (assumption, auto) +done + +lemma capprox_hcomplex_of_complex_CFinite: + "x @c= hcomplex_of_complex D ==> x \ CFinite" +by (rule capprox_sym [THEN [2] capprox_CFinite], auto) + +lemma capprox_mult_CFinite: + "[|a @c= b; c @c= d; b \ CFinite; d \ CFinite|] ==> a*c @c= b*d" +apply (rule capprox_trans) +apply (rule_tac [2] capprox_mult2) +apply (rule capprox_mult1) +prefer 2 apply (blast intro: capprox_CFinite capprox_sym, auto) +done + +lemma capprox_mult_hcomplex_of_complex: + "[|a @c= hcomplex_of_complex b; c @c= hcomplex_of_complex d |] + ==> a*c @c= hcomplex_of_complex b * hcomplex_of_complex d" +apply (blast intro!: capprox_mult_CFinite capprox_hcomplex_of_complex_CFinite CFinite_hcomplex_of_complex) +done + +lemma capprox_SComplex_mult_cancel_zero: + "[| a \ SComplex; a \ 0; a*x @c= 0 |] ==> x @c= 0" +apply (drule SComplex_inverse [THEN SComplex_subset_CFinite [THEN subsetD]]) +apply (auto dest: capprox_mult2 simp add: hcomplex_mult_assoc [symmetric]) +done + +lemma capprox_mult_SComplex1: "[| a \ SComplex; x @c= 0 |] ==> x*a @c= 0" +by (auto dest: SComplex_subset_CFinite [THEN subsetD] capprox_mult1) + +lemma capprox_mult_SComplex2: "[| a \ SComplex; x @c= 0 |] ==> a*x @c= 0" +by (auto dest: SComplex_subset_CFinite [THEN subsetD] capprox_mult2) + +lemma capprox_mult_SComplex_zero_cancel_iff [simp]: + "[|a \ SComplex; a \ 0 |] ==> (a*x @c= 0) = (x @c= 0)" +by (blast intro: capprox_SComplex_mult_cancel_zero capprox_mult_SComplex2) + +lemma capprox_SComplex_mult_cancel: + "[| a \ SComplex; a \ 0; a* w @c= a*z |] ==> w @c= z" +apply (drule SComplex_inverse [THEN SComplex_subset_CFinite [THEN subsetD]]) +apply (auto dest: capprox_mult2 simp add: hcomplex_mult_assoc [symmetric]) +done + +lemma capprox_SComplex_mult_cancel_iff1 [simp]: + "[| a \ SComplex; a \ 0|] ==> (a* w @c= a*z) = (w @c= z)" +by (auto intro!: capprox_mult2 SComplex_subset_CFinite [THEN subsetD] + intro: capprox_SComplex_mult_cancel) + +lemma capprox_hcmod_approx_zero: "(x @c= y) = (hcmod (y - x) @= 0)" +apply (rule capprox_minus_iff [THEN ssubst]) +apply (simp add: capprox_def CInfinitesimal_hcmod_iff mem_infmal_iff diff_minus [symmetric] hcmod_diff_commute) +done + +lemma capprox_approx_zero_iff: "(x @c= 0) = (hcmod x @= 0)" +by (simp add: capprox_hcmod_approx_zero) + +lemma capprox_minus_zero_cancel_iff [simp]: "(-x @c= 0) = (x @c= 0)" +by (simp add: capprox_hcmod_approx_zero) + +lemma Infinitesimal_hcmod_add_diff: + "u @c= 0 ==> hcmod(x + u) - hcmod x \ Infinitesimal" +apply (rule_tac e = "hcmod u" and e' = "- hcmod u" in Infinitesimal_interval2) +apply (auto dest: capprox_approx_zero_iff [THEN iffD1] + simp add: mem_infmal_iff [symmetric] hypreal_diff_def) +apply (rule_tac c1 = "hcmod x" in add_le_cancel_left [THEN iffD1]) +apply (auto simp add: diff_minus [symmetric]) +done + +lemma approx_hcmod_add_hcmod: "u @c= 0 ==> hcmod(x + u) @= hcmod x" +apply (rule approx_minus_iff [THEN iffD2]) +apply (auto intro: Infinitesimal_hcmod_add_diff simp add: mem_infmal_iff [symmetric] diff_minus [symmetric]) +done + +lemma capprox_hcmod_approx: "x @c= y ==> hcmod x @= hcmod y" +by (auto intro: approx_hcmod_add_hcmod + dest!: bex_CInfinitesimal_iff2 [THEN iffD2] + simp add: mem_cinfmal_iff) -defs +subsection{*Zero is the Only Infinitesimal Complex Number*} + +lemma CInfinitesimal_less_SComplex: + "[| x \ SComplex; y \ CInfinitesimal; 0 < hcmod x |] ==> hcmod y < hcmod x" +by (auto intro!: Infinitesimal_less_SReal SComplex_hcmod_SReal simp add: CInfinitesimal_hcmod_iff) + +lemma SComplex_Int_CInfinitesimal_zero: "SComplex Int CInfinitesimal = {0}" +apply (auto simp add: SComplex_def CInfinitesimal_hcmod_iff) +apply (cut_tac r = r in SReal_hcmod_hcomplex_of_complex) +apply (drule_tac A = Reals in IntI, assumption) +apply (subgoal_tac "hcmod (hcomplex_of_complex r) = 0") +apply simp +apply (simp add: SReal_Int_Infinitesimal_zero) +done + +lemma SComplex_CInfinitesimal_zero: + "[| x \ SComplex; x \ CInfinitesimal|] ==> x = 0" +by (cut_tac SComplex_Int_CInfinitesimal_zero, blast) + +lemma SComplex_CFinite_diff_CInfinitesimal: + "[| x \ SComplex; x \ 0 |] ==> x \ CFinite - CInfinitesimal" +by (auto dest: SComplex_CInfinitesimal_zero SComplex_subset_CFinite [THEN subsetD]) + +lemma hcomplex_of_complex_CFinite_diff_CInfinitesimal: + "hcomplex_of_complex x \ 0 + ==> hcomplex_of_complex x \ CFinite - CInfinitesimal" +by (rule SComplex_CFinite_diff_CInfinitesimal, auto) + +lemma hcomplex_of_complex_CInfinitesimal_iff_0 [iff]: + "(hcomplex_of_complex x \ CInfinitesimal) = (x=0)" +apply (auto simp add: hcomplex_of_complex_zero) +apply (rule ccontr) +apply (rule hcomplex_of_complex_CFinite_diff_CInfinitesimal [THEN DiffD2], auto) +done + +lemma number_of_not_CInfinitesimal [simp]: + "number_of w \ (0::hcomplex) ==> number_of w \ CInfinitesimal" +by (fast dest: SComplex_number_of [THEN SComplex_CInfinitesimal_zero]) + +lemma capprox_SComplex_not_zero: + "[| y \ SComplex; x @c= y; y\ 0 |] ==> x \ 0" +by (auto dest: SComplex_CInfinitesimal_zero capprox_sym [THEN mem_cinfmal_iff [THEN iffD2]]) + +lemma CFinite_diff_CInfinitesimal_capprox: + "[| x @c= y; y \ CFinite - CInfinitesimal |] + ==> x \ CFinite - CInfinitesimal" +apply (auto intro: capprox_sym [THEN [2] capprox_CFinite] + simp add: mem_cinfmal_iff) +apply (drule capprox_trans3, assumption) +apply (blast dest: capprox_sym) +done + +lemma CInfinitesimal_ratio: + "[| y \ 0; y \ CInfinitesimal; x/y \ CFinite |] ==> x \ CInfinitesimal" +apply (drule CInfinitesimal_CFinite_mult2, assumption) +apply (simp add: divide_inverse_zero hcomplex_mult_assoc) +done + +lemma SComplex_capprox_iff: + "[|x \ SComplex; y \ SComplex|] ==> (x @c= y) = (x = y)" +apply auto +apply (simp add: capprox_def) +apply (subgoal_tac "x-y = 0", simp) +apply (rule SComplex_CInfinitesimal_zero) +apply (simp add: SComplex_diff, assumption) +done + +lemma number_of_capprox_iff [simp]: + "(number_of v @c= number_of w) = (number_of v = (number_of w :: hcomplex))" +by (rule SComplex_capprox_iff, auto) + +lemma number_of_CInfinitesimal_iff [simp]: + "(number_of w \ CInfinitesimal) = (number_of w = (0::hcomplex))" +apply (rule iffI) +apply (fast dest: SComplex_number_of [THEN SComplex_CInfinitesimal_zero]) +apply (simp (no_asm_simp)) +done + +lemma hcomplex_of_complex_approx_iff [simp]: + "(hcomplex_of_complex k @c= hcomplex_of_complex m) = (k = m)" +apply auto +apply (rule inj_hcomplex_of_complex [THEN injD]) +apply (rule SComplex_capprox_iff [THEN iffD1], auto) +done + +lemma hcomplex_of_complex_capprox_number_of_iff [simp]: + "(hcomplex_of_complex k @c= number_of w) = (k = number_of w)" +by (subst hcomplex_of_complex_approx_iff [symmetric], auto) + +lemma capprox_unique_complex: + "[| r \ SComplex; s \ SComplex; r @c= x; s @c= x|] ==> r = s" +by (blast intro: SComplex_capprox_iff [THEN iffD1] capprox_trans2) + +lemma hcomplex_capproxD1: + "Abs_hcomplex(hcomplexrel ``{%n. X n}) @c= Abs_hcomplex(hcomplexrel``{%n. Y n}) + ==> Abs_hypreal(hyprel `` {%n. Re(X n)}) @= + Abs_hypreal(hyprel `` {%n. Re(Y n)})" +apply (auto simp add: approx_FreeUltrafilterNat_iff) +apply (drule capprox_minus_iff [THEN iffD1]) +apply (auto simp add: hcomplex_minus hcomplex_add mem_cinfmal_iff [symmetric] CInfinitesimal_hcmod_iff hcmod Infinitesimal_FreeUltrafilterNat_iff2) +apply (drule_tac x = m in spec, ultra) +apply (rename_tac Z x) +apply (case_tac "X x") +apply (case_tac "Y x") +apply (auto simp add: complex_minus complex_add complex_mod + simp del: realpow_Suc) +apply (rule_tac y="abs(Z x)" in order_le_less_trans) +apply (drule_tac t = "Z x" in sym) +apply (auto simp add: abs_eqI1 simp del: realpow_Suc) +done + +(* same proof *) +lemma hcomplex_capproxD2: + "Abs_hcomplex(hcomplexrel ``{%n. X n}) @c= Abs_hcomplex(hcomplexrel``{%n. Y n}) + ==> Abs_hypreal(hyprel `` {%n. Im(X n)}) @= + Abs_hypreal(hyprel `` {%n. Im(Y n)})" +apply (auto simp add: approx_FreeUltrafilterNat_iff) +apply (drule capprox_minus_iff [THEN iffD1]) +apply (auto simp add: hcomplex_minus hcomplex_add mem_cinfmal_iff [symmetric] CInfinitesimal_hcmod_iff hcmod Infinitesimal_FreeUltrafilterNat_iff2) +apply (drule_tac x = m in spec, ultra) +apply (rename_tac Z x) +apply (case_tac "X x") +apply (case_tac "Y x") +apply (auto simp add: complex_minus complex_add complex_mod simp del: realpow_Suc) +apply (rule_tac y="abs(Z x)" in order_le_less_trans) +apply (drule_tac t = "Z x" in sym) +apply (auto simp add: abs_eqI1 simp del: realpow_Suc) +done + +lemma hcomplex_capproxI: + "[| Abs_hypreal(hyprel `` {%n. Re(X n)}) @= + Abs_hypreal(hyprel `` {%n. Re(Y n)}); + Abs_hypreal(hyprel `` {%n. Im(X n)}) @= + Abs_hypreal(hyprel `` {%n. Im(Y n)}) + |] ==> Abs_hcomplex(hcomplexrel ``{%n. X n}) @c= Abs_hcomplex(hcomplexrel``{%n. Y n})" +apply (drule approx_minus_iff [THEN iffD1]) +apply (drule approx_minus_iff [THEN iffD1]) +apply (rule capprox_minus_iff [THEN iffD2]) +apply (auto simp add: mem_cinfmal_iff [symmetric] mem_infmal_iff [symmetric] hypreal_minus hypreal_add hcomplex_minus hcomplex_add CInfinitesimal_hcmod_iff hcmod Infinitesimal_FreeUltrafilterNat_iff) +apply (rule bexI, rule_tac [2] lemma_hyprel_refl, auto) +apply (drule_tac x = "u/2" in spec) +apply (drule_tac x = "u/2" in spec, auto, ultra) +apply (drule sym, drule sym) +apply (case_tac "X x") +apply (case_tac "Y x") +apply (auto simp add: complex_minus complex_add complex_mod snd_conv fst_conv numeral_2_eq_2) +apply (rename_tac a b c d) +apply (subgoal_tac "sqrt (abs (a + - c) ^ 2 + abs (b + - d) ^ 2) < u") +apply (rule_tac [2] lemma_sqrt_hcomplex_capprox, auto) +apply (simp add: power2_eq_square) +done + +lemma capprox_approx_iff: + "(Abs_hcomplex(hcomplexrel ``{%n. X n}) @c= Abs_hcomplex(hcomplexrel``{%n. Y n})) = + (Abs_hypreal(hyprel `` {%n. Re(X n)}) @= Abs_hypreal(hyprel `` {%n. Re(Y n)}) & + Abs_hypreal(hyprel `` {%n. Im(X n)}) @= Abs_hypreal(hyprel `` {%n. Im(Y n)}))" +apply (blast intro: hcomplex_capproxI hcomplex_capproxD1 hcomplex_capproxD2) +done + +lemma hcomplex_of_hypreal_capprox_iff [simp]: + "(hcomplex_of_hypreal x @c= hcomplex_of_hypreal z) = (x @= z)" +apply (rule eq_Abs_hypreal [of x]) +apply (rule eq_Abs_hypreal [of z]) +apply (simp add: hcomplex_of_hypreal capprox_approx_iff) +done + +lemma CFinite_HFinite_Re: + "Abs_hcomplex(hcomplexrel ``{%n. X n}) \ CFinite + ==> Abs_hypreal(hyprel `` {%n. Re(X n)}) \ HFinite" +apply (auto simp add: CFinite_hcmod_iff hcmod HFinite_FreeUltrafilterNat_iff) +apply (rule bexI, rule_tac [2] lemma_hyprel_refl) +apply (rule_tac x = u in exI, ultra) +apply (drule sym, case_tac "X x") +apply (auto simp add: complex_mod numeral_2_eq_2 simp del: realpow_Suc) +apply (rule ccontr, drule linorder_not_less [THEN iffD1]) +apply (drule order_less_le_trans, assumption) +apply (drule real_sqrt_ge_abs1 [THEN [2] order_less_le_trans]) +apply (auto simp add: numeral_2_eq_2 [symmetric]) +done + +lemma CFinite_HFinite_Im: + "Abs_hcomplex(hcomplexrel ``{%n. X n}) \ CFinite + ==> Abs_hypreal(hyprel `` {%n. Im(X n)}) \ HFinite" +apply (auto simp add: CFinite_hcmod_iff hcmod HFinite_FreeUltrafilterNat_iff) +apply (rule bexI, rule_tac [2] lemma_hyprel_refl) +apply (rule_tac x = u in exI, ultra) +apply (drule sym, case_tac "X x") +apply (auto simp add: complex_mod simp del: realpow_Suc) +apply (rule ccontr, drule linorder_not_less [THEN iffD1]) +apply (drule order_less_le_trans, assumption) +apply (drule real_sqrt_ge_abs2 [THEN [2] order_less_le_trans], auto) +done + +lemma HFinite_Re_Im_CFinite: + "[| Abs_hypreal(hyprel `` {%n. Re(X n)}) \ HFinite; + Abs_hypreal(hyprel `` {%n. Im(X n)}) \ HFinite + |] ==> Abs_hcomplex(hcomplexrel ``{%n. X n}) \ CFinite" +apply (auto simp add: CFinite_hcmod_iff hcmod HFinite_FreeUltrafilterNat_iff) +apply (rename_tac Y Z u v) +apply (rule bexI, rule_tac [2] lemma_hyprel_refl) +apply (rule_tac x = "2* (u + v) " in exI) +apply ultra +apply (drule sym, case_tac "X x") +apply (auto simp add: complex_mod numeral_2_eq_2 simp del: realpow_Suc) +apply (subgoal_tac "0 < u") + prefer 2 apply arith +apply (subgoal_tac "0 < v") + prefer 2 apply arith +apply (subgoal_tac "sqrt (abs (Y x) ^ 2 + abs (Z x) ^ 2) < 2*u + 2*v") +apply (rule_tac [2] lemma_sqrt_hcomplex_capprox, auto) +apply (simp add: power2_eq_square) +done + +lemma CFinite_HFinite_iff: + "(Abs_hcomplex(hcomplexrel ``{%n. X n}) \ CFinite) = + (Abs_hypreal(hyprel `` {%n. Re(X n)}) \ HFinite & + Abs_hypreal(hyprel `` {%n. Im(X n)}) \ HFinite)" +by (blast intro: HFinite_Re_Im_CFinite CFinite_HFinite_Im CFinite_HFinite_Re) + +lemma SComplex_Re_SReal: + "Abs_hcomplex(hcomplexrel ``{%n. X n}) \ SComplex + ==> Abs_hypreal(hyprel `` {%n. Re(X n)}) \ Reals" +apply (auto simp add: SComplex_def hcomplex_of_complex_def SReal_def hypreal_of_real_def) +apply (rule_tac x = "Re r" in exI, ultra) +done + +lemma SComplex_Im_SReal: + "Abs_hcomplex(hcomplexrel ``{%n. X n}) \ SComplex + ==> Abs_hypreal(hyprel `` {%n. Im(X n)}) \ Reals" +apply (auto simp add: SComplex_def hcomplex_of_complex_def SReal_def hypreal_of_real_def) +apply (rule_tac x = "Im r" in exI, ultra) +done + +lemma Reals_Re_Im_SComplex: + "[| Abs_hypreal(hyprel `` {%n. Re(X n)}) \ Reals; + Abs_hypreal(hyprel `` {%n. Im(X n)}) \ Reals + |] ==> Abs_hcomplex(hcomplexrel ``{%n. X n}) \ SComplex" +apply (auto simp add: SComplex_def hcomplex_of_complex_def SReal_def hypreal_of_real_def) +apply (rule_tac x = "Complex r ra" in exI, ultra) +done + +lemma SComplex_SReal_iff: + "(Abs_hcomplex(hcomplexrel ``{%n. X n}) \ SComplex) = + (Abs_hypreal(hyprel `` {%n. Re(X n)}) \ Reals & + Abs_hypreal(hyprel `` {%n. Im(X n)}) \ Reals)" +by (blast intro: SComplex_Re_SReal SComplex_Im_SReal Reals_Re_Im_SComplex) + +lemma CInfinitesimal_Infinitesimal_iff: + "(Abs_hcomplex(hcomplexrel ``{%n. X n}) \ CInfinitesimal) = + (Abs_hypreal(hyprel `` {%n. Re(X n)}) \ Infinitesimal & + Abs_hypreal(hyprel `` {%n. Im(X n)}) \ Infinitesimal)" +by (simp add: mem_cinfmal_iff mem_infmal_iff hcomplex_zero_num hypreal_zero_num capprox_approx_iff) + +lemma eq_Abs_hcomplex_EX: + "(\t. P t) = (\X. P (Abs_hcomplex(hcomplexrel `` {X})))" +apply auto +apply (rule_tac z = t in eq_Abs_hcomplex, auto) +done + +lemma eq_Abs_hcomplex_Bex: + "(\t \ A. P t) = (\X. (Abs_hcomplex(hcomplexrel `` {X})) \ A & + P (Abs_hcomplex(hcomplexrel `` {X})))" +apply auto +apply (rule_tac z = t in eq_Abs_hcomplex, auto) +done + +(* Here we go - easy proof now!! *) +lemma stc_part_Ex: "x:CFinite ==> \t \ SComplex. x @c= t" +apply (rule_tac z = x in eq_Abs_hcomplex) +apply (auto simp add: CFinite_HFinite_iff eq_Abs_hcomplex_Bex SComplex_SReal_iff capprox_approx_iff) +apply (drule st_part_Ex, safe)+ +apply (rule_tac z = t in eq_Abs_hypreal) +apply (rule_tac z = ta in eq_Abs_hypreal, auto) +apply (rule_tac x = "%n. Complex (xa n) (xb n) " in exI) +apply auto +done + +lemma stc_part_Ex1: "x:CFinite ==> EX! t. t \ SComplex & x @c= t" +apply (drule stc_part_Ex, safe) +apply (drule_tac [2] capprox_sym, drule_tac [2] capprox_sym, drule_tac [2] capprox_sym) +apply (auto intro!: capprox_unique_complex) +done + +lemma CFinite_Int_CInfinite_empty: "CFinite Int CInfinite = {}" +by (simp add: CFinite_def CInfinite_def, auto) + +lemma CFinite_not_CInfinite: "x \ CFinite ==> x \ CInfinite" +by (insert CFinite_Int_CInfinite_empty, blast) + +text{*Not sure this is a good idea!*} +declare CFinite_Int_CInfinite_empty [simp] + +lemma not_CFinite_CInfinite: "x\ CFinite ==> x \ CInfinite" +by (auto intro: not_HFinite_HInfinite simp add: CFinite_hcmod_iff CInfinite_hcmod_iff) + +lemma CInfinite_CFinite_disj: "x \ CInfinite | x \ CFinite" +by (blast intro: not_CFinite_CInfinite) + +lemma CInfinite_CFinite_iff: "(x \ CInfinite) = (x \ CFinite)" +by (blast dest: CFinite_not_CInfinite not_CFinite_CInfinite) + +lemma CFinite_CInfinite_iff: "(x \ CFinite) = (x \ CInfinite)" +by (simp add: CInfinite_CFinite_iff) + +lemma CInfinite_diff_CFinite_CInfinitesimal_disj: + "x \ CInfinitesimal ==> x \ CInfinite | x \ CFinite - CInfinitesimal" +by (fast intro: not_CFinite_CInfinite) + +lemma CFinite_inverse: + "[| x \ CFinite; x \ CInfinitesimal |] ==> inverse x \ CFinite" +apply (cut_tac x = "inverse x" in CInfinite_CFinite_disj) +apply (auto dest!: CInfinite_inverse_CInfinitesimal) +done + +lemma CFinite_inverse2: "x \ CFinite - CInfinitesimal ==> inverse x \ CFinite" +by (blast intro: CFinite_inverse) + +lemma CInfinitesimal_inverse_CFinite: + "x \ CInfinitesimal ==> inverse(x) \ CFinite" +apply (drule CInfinite_diff_CFinite_CInfinitesimal_disj) +apply (blast intro: CFinite_inverse CInfinite_inverse_CInfinitesimal CInfinitesimal_subset_CFinite [THEN subsetD]) +done + + +lemma CFinite_not_CInfinitesimal_inverse: + "x \ CFinite - CInfinitesimal ==> inverse x \ CFinite - CInfinitesimal" +apply (auto intro: CInfinitesimal_inverse_CFinite) +apply (drule CInfinitesimal_CFinite_mult2, assumption) +apply (simp add: not_CInfinitesimal_not_zero) +done + +lemma capprox_inverse: + "[| x @c= y; y \ CFinite - CInfinitesimal |] ==> inverse x @c= inverse y" +apply (frule CFinite_diff_CInfinitesimal_capprox, assumption) +apply (frule not_CInfinitesimal_not_zero2) +apply (frule_tac x = x in not_CInfinitesimal_not_zero2) +apply (drule CFinite_inverse2)+ +apply (drule capprox_mult2, assumption, auto) +apply (drule_tac c = "inverse x" in capprox_mult1, assumption) +apply (auto intro: capprox_sym simp add: hcomplex_mult_assoc) +done + +lemmas hcomplex_of_complex_capprox_inverse = hcomplex_of_complex_CFinite_diff_CInfinitesimal [THEN [2] capprox_inverse] + +lemma inverse_add_CInfinitesimal_capprox: + "[| x \ CFinite - CInfinitesimal; + h \ CInfinitesimal |] ==> inverse(x + h) @c= inverse x" +by (auto intro: capprox_inverse capprox_sym CInfinitesimal_add_capprox_self) + +lemma inverse_add_CInfinitesimal_capprox2: + "[| x \ CFinite - CInfinitesimal; + h \ CInfinitesimal |] ==> inverse(h + x) @c= inverse x" +apply (rule add_commute [THEN subst]) +apply (blast intro: inverse_add_CInfinitesimal_capprox) +done + +lemma inverse_add_CInfinitesimal_approx_CInfinitesimal: + "[| x \ CFinite - CInfinitesimal; + h \ CInfinitesimal |] ==> inverse(x + h) - inverse x @c= h" +apply (rule capprox_trans2) +apply (auto intro: inverse_add_CInfinitesimal_capprox + simp add: mem_cinfmal_iff diff_minus capprox_minus_iff [symmetric]) +done + +lemma CInfinitesimal_square_iff [iff]: + "(x*x \ CInfinitesimal) = (x \ CInfinitesimal)" +by (simp add: CInfinitesimal_hcmod_iff hcmod_mult) + +lemma capprox_CFinite_mult_cancel: + "[| a \ CFinite-CInfinitesimal; a*w @c= a*z |] ==> w @c= z" +apply safe +apply (frule CFinite_inverse, assumption) +apply (drule not_CInfinitesimal_not_zero) +apply (auto dest: capprox_mult2 simp add: hcomplex_mult_assoc [symmetric]) +done + +lemma capprox_CFinite_mult_cancel_iff1: + "a \ CFinite-CInfinitesimal ==> (a * w @c= a * z) = (w @c= z)" +by (auto intro: capprox_mult2 capprox_CFinite_mult_cancel) + + +subsection{*Theorems About Monads*} + +lemma capprox_cmonad_iff: "(x @c= y) = (cmonad(x)=cmonad(y))" +apply (simp add: cmonad_def) +apply (auto dest: capprox_sym elim!: capprox_trans equalityCE) +done + +lemma CInfinitesimal_cmonad_eq: + "e \ CInfinitesimal ==> cmonad (x+e) = cmonad x" +by (fast intro!: CInfinitesimal_add_capprox_self [THEN capprox_sym] capprox_cmonad_iff [THEN iffD1]) + +lemma mem_cmonad_iff: "(u \ cmonad x) = (-u \ cmonad (-x))" +by (simp add: cmonad_def) + +lemma CInfinitesimal_cmonad_zero_iff: "(x:CInfinitesimal) = (x \ cmonad 0)" +by (auto intro: capprox_sym simp add: mem_cinfmal_iff cmonad_def) + +lemma cmonad_zero_minus_iff: "(x \ cmonad 0) = (-x \ cmonad 0)" +by (simp add: CInfinitesimal_cmonad_zero_iff [symmetric]) + +lemma cmonad_zero_hcmod_iff: "(x \ cmonad 0) = (hcmod x:monad 0)" +by (simp add: CInfinitesimal_cmonad_zero_iff [symmetric] CInfinitesimal_hcmod_iff Infinitesimal_monad_zero_iff [symmetric]) + +lemma mem_cmonad_self [simp]: "x \ cmonad x" +by (simp add: cmonad_def) + + +subsection{*Theorems About Standard Part*} + +lemma stc_capprox_self: "x \ CFinite ==> stc x @c= x" +apply (simp add: stc_def) +apply (frule stc_part_Ex, safe) +apply (rule someI2) +apply (auto intro: capprox_sym) +done + +lemma stc_SComplex: "x \ CFinite ==> stc x \ SComplex" +apply (simp add: stc_def) +apply (frule stc_part_Ex, safe) +apply (rule someI2) +apply (auto intro: capprox_sym) +done + +lemma stc_CFinite: "x \ CFinite ==> stc x \ CFinite" +by (erule stc_SComplex [THEN SComplex_subset_CFinite [THEN subsetD]]) + +lemma stc_SComplex_eq [simp]: "x \ SComplex ==> stc x = x" +apply (simp add: stc_def) +apply (rule some_equality) +apply (auto intro: SComplex_subset_CFinite [THEN subsetD]) +apply (blast dest: SComplex_capprox_iff [THEN iffD1]) +done + +lemma stc_hcomplex_of_complex: + "stc (hcomplex_of_complex x) = hcomplex_of_complex x" +by auto + +lemma stc_eq_capprox: + "[| x \ CFinite; y \ CFinite; stc x = stc y |] ==> x @c= y" +by (auto dest!: stc_capprox_self elim!: capprox_trans3) + +lemma capprox_stc_eq: + "[| x \ CFinite; y \ CFinite; x @c= y |] ==> stc x = stc y" +by (blast intro: capprox_trans capprox_trans2 SComplex_capprox_iff [THEN iffD1] + dest: stc_capprox_self stc_SComplex) - capprox_def "x @c= y == (x - y) : CInfinitesimal" +lemma stc_eq_capprox_iff: + "[| x \ CFinite; y \ CFinite|] ==> (x @c= y) = (stc x = stc y)" +by (blast intro: capprox_stc_eq stc_eq_capprox) + +lemma stc_CInfinitesimal_add_SComplex: + "[| x \ SComplex; e \ CInfinitesimal |] ==> stc(x + e) = x" +apply (frule stc_SComplex_eq [THEN subst]) +prefer 2 apply assumption +apply (frule SComplex_subset_CFinite [THEN subsetD]) +apply (frule CInfinitesimal_subset_CFinite [THEN subsetD]) +apply (drule stc_SComplex_eq) +apply (rule capprox_stc_eq) +apply (auto intro: CFinite_add simp add: CInfinitesimal_add_capprox_self [THEN capprox_sym]) +done + +lemma stc_CInfinitesimal_add_SComplex2: + "[| x \ SComplex; e \ CInfinitesimal |] ==> stc(e + x) = x" +apply (rule add_commute [THEN subst]) +apply (blast intro!: stc_CInfinitesimal_add_SComplex) +done + +lemma CFinite_stc_CInfinitesimal_add: + "x \ CFinite ==> \e \ CInfinitesimal. x = stc(x) + e" +by (blast dest!: stc_capprox_self [THEN capprox_sym] bex_CInfinitesimal_iff2 [THEN iffD2]) + +lemma stc_add: + "[| x \ CFinite; y \ CFinite |] ==> stc (x + y) = stc(x) + stc(y)" +apply (frule CFinite_stc_CInfinitesimal_add) +apply (frule_tac x = y in CFinite_stc_CInfinitesimal_add, safe) +apply (subgoal_tac "stc (x + y) = stc ((stc x + e) + (stc y + ea))") +apply (drule_tac [2] sym, drule_tac [2] sym) + prefer 2 apply simp +apply (simp (no_asm_simp) add: add_ac) +apply (drule stc_SComplex)+ +apply (drule SComplex_add, assumption) +apply (drule CInfinitesimal_add, assumption) +apply (rule add_assoc [THEN subst]) +apply (blast intro!: stc_CInfinitesimal_add_SComplex2) +done + +lemma stc_number_of [simp]: "stc (number_of w) = number_of w" +by (rule SComplex_number_of [THEN stc_SComplex_eq]) + +lemma stc_zero [simp]: "stc 0 = 0" +by simp + +lemma stc_one [simp]: "stc 1 = 1" +by simp + +lemma stc_minus: "y \ CFinite ==> stc(-y) = -stc(y)" +apply (frule CFinite_minus_iff [THEN iffD2]) +apply (rule hcomplex_add_minus_eq_minus) +apply (drule stc_add [symmetric], assumption) +apply (simp add: add_commute) +done + +lemma stc_diff: + "[| x \ CFinite; y \ CFinite |] ==> stc (x-y) = stc(x) - stc(y)" +apply (simp add: diff_minus) +apply (frule_tac y1 = y in stc_minus [symmetric]) +apply (drule_tac x1 = y in CFinite_minus_iff [THEN iffD2]) +apply (auto intro: stc_add) +done + +lemma lemma_stc_mult: + "[| x \ CFinite; y \ CFinite; + e \ CInfinitesimal; + ea: CInfinitesimal |] + ==> e*y + x*ea + e*ea: CInfinitesimal" +apply (frule_tac x = e and y = y in CInfinitesimal_CFinite_mult) +apply (frule_tac [2] x = ea and y = x in CInfinitesimal_CFinite_mult) +apply (drule_tac [3] CInfinitesimal_mult) +apply (auto intro: CInfinitesimal_add simp add: add_ac mult_ac) +done + +lemma stc_mult: + "[| x \ CFinite; y \ CFinite |] + ==> stc (x * y) = stc(x) * stc(y)" +apply (frule CFinite_stc_CInfinitesimal_add) +apply (frule_tac x = y in CFinite_stc_CInfinitesimal_add, safe) +apply (subgoal_tac "stc (x * y) = stc ((stc x + e) * (stc y + ea))") +apply (drule_tac [2] sym, drule_tac [2] sym) + prefer 2 apply simp +apply (erule_tac V = "x = stc x + e" in thin_rl) +apply (erule_tac V = "y = stc y + ea" in thin_rl) +apply (simp add: hcomplex_add_mult_distrib right_distrib) +apply (drule stc_SComplex)+ +apply (simp (no_asm_use) add: add_assoc) +apply (rule stc_CInfinitesimal_add_SComplex) +apply (blast intro!: SComplex_mult) +apply (drule SComplex_subset_CFinite [THEN subsetD])+ +apply (rule add_assoc [THEN subst]) +apply (blast intro!: lemma_stc_mult) +done + +lemma stc_CInfinitesimal: "x \ CInfinitesimal ==> stc x = 0" +apply (rule stc_zero [THEN subst]) +apply (rule capprox_stc_eq) +apply (auto intro: CInfinitesimal_subset_CFinite [THEN subsetD] + simp add: mem_cinfmal_iff [symmetric]) +done + +lemma stc_not_CInfinitesimal: "stc(x) \ 0 ==> x \ CInfinitesimal" +by (fast intro: stc_CInfinitesimal) + +lemma stc_inverse: + "[| x \ CFinite; stc x \ 0 |] + ==> stc(inverse x) = inverse (stc x)" +apply (rule_tac c1 = "stc x" in hcomplex_mult_left_cancel [THEN iffD1]) +apply (auto simp add: stc_mult [symmetric] stc_not_CInfinitesimal CFinite_inverse) +apply (subst right_inverse, auto) +done + +lemma stc_divide [simp]: + "[| x \ CFinite; y \ CFinite; stc y \ 0 |] + ==> stc(x/y) = (stc x) / (stc y)" +by (simp add: divide_inverse_zero stc_mult stc_not_CInfinitesimal CFinite_inverse stc_inverse) + +lemma stc_idempotent [simp]: "x \ CFinite ==> stc(stc(x)) = stc(x)" +by (blast intro: stc_CFinite stc_capprox_self capprox_stc_eq) + +lemma CFinite_HFinite_hcomplex_of_hypreal: + "z \ HFinite ==> hcomplex_of_hypreal z \ CFinite" +apply (rule eq_Abs_hypreal [of z]) +apply (simp add: hcomplex_of_hypreal CFinite_HFinite_iff hypreal_zero_def [symmetric]) +done + +lemma SComplex_SReal_hcomplex_of_hypreal: + "x \ Reals ==> hcomplex_of_hypreal x \ SComplex" +apply (rule eq_Abs_hypreal [of x]) +apply (simp add: hcomplex_of_hypreal SComplex_SReal_iff hypreal_zero_def [symmetric]) +done + +lemma stc_hcomplex_of_hypreal: + "z \ HFinite ==> stc(hcomplex_of_hypreal z) = hcomplex_of_hypreal (st z)" +apply (simp add: st_def stc_def) +apply (frule st_part_Ex, safe) +apply (rule someI2) +apply (auto intro: approx_sym) +apply (drule CFinite_HFinite_hcomplex_of_hypreal) +apply (frule stc_part_Ex, safe) +apply (rule someI2) +apply (auto intro: capprox_sym intro!: capprox_unique_complex dest: SComplex_SReal_hcomplex_of_hypreal) +done + +(* +Goal "x \ CFinite ==> hcmod(stc x) = st(hcmod x)" +by (dtac stc_capprox_self 1) +by (auto_tac (claset(),simpset() addsimps [bex_CInfinitesimal_iff2 RS sym])); + + +approx_hcmod_add_hcmod +*) + +lemma CInfinitesimal_hcnj_iff [simp]: + "(hcnj z \ CInfinitesimal) = (z \ CInfinitesimal)" +by (simp add: CInfinitesimal_hcmod_iff) + +lemma CInfinite_HInfinite_iff: + "(Abs_hcomplex(hcomplexrel ``{%n. X n}) \ CInfinite) = + (Abs_hypreal(hyprel `` {%n. Re(X n)}) \ HInfinite | + Abs_hypreal(hyprel `` {%n. Im(X n)}) \ HInfinite)" +by (simp add: CInfinite_CFinite_iff HInfinite_HFinite_iff CFinite_HFinite_iff) + +text{*These theorems should probably be deleted*} +lemma hcomplex_split_CInfinitesimal_iff: + "(hcomplex_of_hypreal x + iii * hcomplex_of_hypreal y \ CInfinitesimal) = + (x \ Infinitesimal & y \ Infinitesimal)" +apply (rule eq_Abs_hypreal [of x]) +apply (rule eq_Abs_hypreal [of y]) +apply (simp add: iii_def hcomplex_add hcomplex_mult hcomplex_of_hypreal CInfinitesimal_Infinitesimal_iff) +done + +lemma hcomplex_split_CFinite_iff: + "(hcomplex_of_hypreal x + iii * hcomplex_of_hypreal y \ CFinite) = + (x \ HFinite & y \ HFinite)" +apply (rule eq_Abs_hypreal [of x]) +apply (rule eq_Abs_hypreal [of y]) +apply (simp add: iii_def hcomplex_add hcomplex_mult hcomplex_of_hypreal CFinite_HFinite_iff) +done + +lemma hcomplex_split_SComplex_iff: + "(hcomplex_of_hypreal x + iii * hcomplex_of_hypreal y \ SComplex) = + (x \ Reals & y \ Reals)" +apply (rule eq_Abs_hypreal [of x]) +apply (rule eq_Abs_hypreal [of y]) +apply (simp add: iii_def hcomplex_add hcomplex_mult hcomplex_of_hypreal SComplex_SReal_iff) +done + +lemma hcomplex_split_CInfinite_iff: + "(hcomplex_of_hypreal x + iii * hcomplex_of_hypreal y \ CInfinite) = + (x \ HInfinite | y \ HInfinite)" +apply (rule eq_Abs_hypreal [of x]) +apply (rule eq_Abs_hypreal [of y]) +apply (simp add: iii_def hcomplex_add hcomplex_mult hcomplex_of_hypreal CInfinite_HInfinite_iff) +done + +lemma hcomplex_split_capprox_iff: + "(hcomplex_of_hypreal x + iii * hcomplex_of_hypreal y @c= + hcomplex_of_hypreal x' + iii * hcomplex_of_hypreal y') = + (x @= x' & y @= y')" +apply (rule eq_Abs_hypreal [of x]) +apply (rule eq_Abs_hypreal [of y]) +apply (rule eq_Abs_hypreal [of x']) +apply (rule eq_Abs_hypreal [of y']) +apply (simp add: iii_def hcomplex_add hcomplex_mult hcomplex_of_hypreal capprox_approx_iff) +done + +lemma complex_seq_to_hcomplex_CInfinitesimal: + "\n. cmod (X n - x) < inverse (real (Suc n)) ==> + Abs_hcomplex(hcomplexrel``{X}) - hcomplex_of_complex x \ CInfinitesimal" +apply (simp add: hcomplex_diff CInfinitesimal_hcmod_iff hcomplex_of_complex_def Infinitesimal_FreeUltrafilterNat_iff hcmod) +apply (rule bexI, auto) +apply (auto dest: FreeUltrafilterNat_inverse_real_of_posnat FreeUltrafilterNat_all FreeUltrafilterNat_Int intro: order_less_trans FreeUltrafilterNat_subset) +done + +lemma CInfinitesimal_hcomplex_of_hypreal_epsilon [simp]: + "hcomplex_of_hypreal epsilon \ CInfinitesimal" +by (simp add: CInfinitesimal_hcmod_iff) + +lemma hcomplex_of_complex_approx_zero_iff [simp]: + "(hcomplex_of_complex z @c= 0) = (z = 0)" +by (simp add: hcomplex_of_complex_zero [symmetric] + del: hcomplex_of_complex_zero) + +lemma hcomplex_of_complex_approx_zero_iff2 [simp]: + "(0 @c= hcomplex_of_complex z) = (z = 0)" +by (simp add: hcomplex_of_complex_zero [symmetric] + del: hcomplex_of_complex_zero) + + +ML +{* +val SComplex_add = thm "SComplex_add"; +val SComplex_mult = thm "SComplex_mult"; +val SComplex_inverse = thm "SComplex_inverse"; +val SComplex_divide = thm "SComplex_divide"; +val SComplex_minus = thm "SComplex_minus"; +val SComplex_minus_iff = thm "SComplex_minus_iff"; +val SComplex_diff = thm "SComplex_diff"; +val SComplex_add_cancel = thm "SComplex_add_cancel"; +val SReal_hcmod_hcomplex_of_complex = thm "SReal_hcmod_hcomplex_of_complex"; +val SReal_hcmod_number_of = thm "SReal_hcmod_number_of"; +val SReal_hcmod_SComplex = thm "SReal_hcmod_SComplex"; +val SComplex_hcomplex_of_complex = thm "SComplex_hcomplex_of_complex"; +val SComplex_number_of = thm "SComplex_number_of"; +val SComplex_divide_number_of = thm "SComplex_divide_number_of"; +val SComplex_UNIV_complex = thm "SComplex_UNIV_complex"; +val SComplex_iff = thm "SComplex_iff"; +val hcomplex_of_complex_image = thm "hcomplex_of_complex_image"; +val inv_hcomplex_of_complex_image = thm "inv_hcomplex_of_complex_image"; +val SComplex_hcomplex_of_complex_image = thm "SComplex_hcomplex_of_complex_image"; +val SComplex_SReal_dense = thm "SComplex_SReal_dense"; +val SComplex_hcmod_SReal = thm "SComplex_hcmod_SReal"; +val SComplex_zero = thm "SComplex_zero"; +val SComplex_one = thm "SComplex_one"; +val CFinite_add = thm "CFinite_add"; +val CFinite_mult = thm "CFinite_mult"; +val CFinite_minus_iff = thm "CFinite_minus_iff"; +val SComplex_subset_CFinite = thm "SComplex_subset_CFinite"; +val HFinite_hcmod_hcomplex_of_complex = thm "HFinite_hcmod_hcomplex_of_complex"; +val CFinite_hcomplex_of_complex = thm "CFinite_hcomplex_of_complex"; +val CFiniteD = thm "CFiniteD"; +val CFinite_hcmod_iff = thm "CFinite_hcmod_iff"; +val CFinite_number_of = thm "CFinite_number_of"; +val CFinite_bounded = thm "CFinite_bounded"; +val CInfinitesimal_zero = thm "CInfinitesimal_zero"; +val hcomplex_sum_of_halves = thm "hcomplex_sum_of_halves"; +val CInfinitesimal_hcmod_iff = thm "CInfinitesimal_hcmod_iff"; +val one_not_CInfinitesimal = thm "one_not_CInfinitesimal"; +val CInfinitesimal_add = thm "CInfinitesimal_add"; +val CInfinitesimal_minus_iff = thm "CInfinitesimal_minus_iff"; +val CInfinitesimal_diff = thm "CInfinitesimal_diff"; +val CInfinitesimal_mult = thm "CInfinitesimal_mult"; +val CInfinitesimal_CFinite_mult = thm "CInfinitesimal_CFinite_mult"; +val CInfinitesimal_CFinite_mult2 = thm "CInfinitesimal_CFinite_mult2"; +val CInfinite_hcmod_iff = thm "CInfinite_hcmod_iff"; +val CInfinite_inverse_CInfinitesimal = thm "CInfinite_inverse_CInfinitesimal"; +val CInfinite_mult = thm "CInfinite_mult"; +val CInfinite_minus_iff = thm "CInfinite_minus_iff"; +val CFinite_sum_squares = thm "CFinite_sum_squares"; +val not_CInfinitesimal_not_zero = thm "not_CInfinitesimal_not_zero"; +val not_CInfinitesimal_not_zero2 = thm "not_CInfinitesimal_not_zero2"; +val CFinite_diff_CInfinitesimal_hcmod = thm "CFinite_diff_CInfinitesimal_hcmod"; +val hcmod_less_CInfinitesimal = thm "hcmod_less_CInfinitesimal"; +val hcmod_le_CInfinitesimal = thm "hcmod_le_CInfinitesimal"; +val CInfinitesimal_interval = thm "CInfinitesimal_interval"; +val CInfinitesimal_interval2 = thm "CInfinitesimal_interval2"; +val not_CInfinitesimal_mult = thm "not_CInfinitesimal_mult"; +val CInfinitesimal_mult_disj = thm "CInfinitesimal_mult_disj"; +val CFinite_CInfinitesimal_diff_mult = thm "CFinite_CInfinitesimal_diff_mult"; +val CInfinitesimal_subset_CFinite = thm "CInfinitesimal_subset_CFinite"; +val CInfinitesimal_hcomplex_of_complex_mult = thm "CInfinitesimal_hcomplex_of_complex_mult"; +val CInfinitesimal_hcomplex_of_complex_mult2 = thm "CInfinitesimal_hcomplex_of_complex_mult2"; +val mem_cinfmal_iff = thm "mem_cinfmal_iff"; +val capprox_minus_iff = thm "capprox_minus_iff"; +val capprox_minus_iff2 = thm "capprox_minus_iff2"; +val capprox_refl = thm "capprox_refl"; +val capprox_sym = thm "capprox_sym"; +val capprox_trans = thm "capprox_trans"; +val capprox_trans2 = thm "capprox_trans2"; +val capprox_trans3 = thm "capprox_trans3"; +val number_of_capprox_reorient = thm "number_of_capprox_reorient"; +val CInfinitesimal_capprox_minus = thm "CInfinitesimal_capprox_minus"; +val capprox_monad_iff = thm "capprox_monad_iff"; +val Infinitesimal_capprox = thm "Infinitesimal_capprox"; +val capprox_add = thm "capprox_add"; +val capprox_minus = thm "capprox_minus"; +val capprox_minus2 = thm "capprox_minus2"; +val capprox_minus_cancel = thm "capprox_minus_cancel"; +val capprox_add_minus = thm "capprox_add_minus"; +val capprox_mult1 = thm "capprox_mult1"; +val capprox_mult2 = thm "capprox_mult2"; +val capprox_mult_subst = thm "capprox_mult_subst"; +val capprox_mult_subst2 = thm "capprox_mult_subst2"; +val capprox_mult_subst_SComplex = thm "capprox_mult_subst_SComplex"; +val capprox_eq_imp = thm "capprox_eq_imp"; +val CInfinitesimal_minus_capprox = thm "CInfinitesimal_minus_capprox"; +val bex_CInfinitesimal_iff = thm "bex_CInfinitesimal_iff"; +val bex_CInfinitesimal_iff2 = thm "bex_CInfinitesimal_iff2"; +val CInfinitesimal_add_capprox = thm "CInfinitesimal_add_capprox"; +val CInfinitesimal_add_capprox_self = thm "CInfinitesimal_add_capprox_self"; +val CInfinitesimal_add_capprox_self2 = thm "CInfinitesimal_add_capprox_self2"; +val CInfinitesimal_add_minus_capprox_self = thm "CInfinitesimal_add_minus_capprox_self"; +val CInfinitesimal_add_cancel = thm "CInfinitesimal_add_cancel"; +val CInfinitesimal_add_right_cancel = thm "CInfinitesimal_add_right_cancel"; +val capprox_add_left_cancel = thm "capprox_add_left_cancel"; +val capprox_add_right_cancel = thm "capprox_add_right_cancel"; +val capprox_add_mono1 = thm "capprox_add_mono1"; +val capprox_add_mono2 = thm "capprox_add_mono2"; +val capprox_add_left_iff = thm "capprox_add_left_iff"; +val capprox_add_right_iff = thm "capprox_add_right_iff"; +val capprox_CFinite = thm "capprox_CFinite"; +val capprox_hcomplex_of_complex_CFinite = thm "capprox_hcomplex_of_complex_CFinite"; +val capprox_mult_CFinite = thm "capprox_mult_CFinite"; +val capprox_mult_hcomplex_of_complex = thm "capprox_mult_hcomplex_of_complex"; +val capprox_SComplex_mult_cancel_zero = thm "capprox_SComplex_mult_cancel_zero"; +val capprox_mult_SComplex1 = thm "capprox_mult_SComplex1"; +val capprox_mult_SComplex2 = thm "capprox_mult_SComplex2"; +val capprox_mult_SComplex_zero_cancel_iff = thm "capprox_mult_SComplex_zero_cancel_iff"; +val capprox_SComplex_mult_cancel = thm "capprox_SComplex_mult_cancel"; +val capprox_SComplex_mult_cancel_iff1 = thm "capprox_SComplex_mult_cancel_iff1"; +val capprox_hcmod_approx_zero = thm "capprox_hcmod_approx_zero"; +val capprox_approx_zero_iff = thm "capprox_approx_zero_iff"; +val capprox_minus_zero_cancel_iff = thm "capprox_minus_zero_cancel_iff"; +val Infinitesimal_hcmod_add_diff = thm "Infinitesimal_hcmod_add_diff"; +val approx_hcmod_add_hcmod = thm "approx_hcmod_add_hcmod"; +val capprox_hcmod_approx = thm "capprox_hcmod_approx"; +val CInfinitesimal_less_SComplex = thm "CInfinitesimal_less_SComplex"; +val SComplex_Int_CInfinitesimal_zero = thm "SComplex_Int_CInfinitesimal_zero"; +val SComplex_CInfinitesimal_zero = thm "SComplex_CInfinitesimal_zero"; +val SComplex_CFinite_diff_CInfinitesimal = thm "SComplex_CFinite_diff_CInfinitesimal"; +val hcomplex_of_complex_CFinite_diff_CInfinitesimal = thm "hcomplex_of_complex_CFinite_diff_CInfinitesimal"; +val hcomplex_of_complex_CInfinitesimal_iff_0 = thm "hcomplex_of_complex_CInfinitesimal_iff_0"; +val number_of_not_CInfinitesimal = thm "number_of_not_CInfinitesimal"; +val capprox_SComplex_not_zero = thm "capprox_SComplex_not_zero"; +val CFinite_diff_CInfinitesimal_capprox = thm "CFinite_diff_CInfinitesimal_capprox"; +val CInfinitesimal_ratio = thm "CInfinitesimal_ratio"; +val SComplex_capprox_iff = thm "SComplex_capprox_iff"; +val number_of_capprox_iff = thm "number_of_capprox_iff"; +val number_of_CInfinitesimal_iff = thm "number_of_CInfinitesimal_iff"; +val hcomplex_of_complex_approx_iff = thm "hcomplex_of_complex_approx_iff"; +val hcomplex_of_complex_capprox_number_of_iff = thm "hcomplex_of_complex_capprox_number_of_iff"; +val capprox_unique_complex = thm "capprox_unique_complex"; +val hcomplex_capproxD1 = thm "hcomplex_capproxD1"; +val hcomplex_capproxD2 = thm "hcomplex_capproxD2"; +val hcomplex_capproxI = thm "hcomplex_capproxI"; +val capprox_approx_iff = thm "capprox_approx_iff"; +val hcomplex_of_hypreal_capprox_iff = thm "hcomplex_of_hypreal_capprox_iff"; +val CFinite_HFinite_Re = thm "CFinite_HFinite_Re"; +val CFinite_HFinite_Im = thm "CFinite_HFinite_Im"; +val HFinite_Re_Im_CFinite = thm "HFinite_Re_Im_CFinite"; +val CFinite_HFinite_iff = thm "CFinite_HFinite_iff"; +val SComplex_Re_SReal = thm "SComplex_Re_SReal"; +val SComplex_Im_SReal = thm "SComplex_Im_SReal"; +val Reals_Re_Im_SComplex = thm "Reals_Re_Im_SComplex"; +val SComplex_SReal_iff = thm "SComplex_SReal_iff"; +val CInfinitesimal_Infinitesimal_iff = thm "CInfinitesimal_Infinitesimal_iff"; +val eq_Abs_hcomplex_Bex = thm "eq_Abs_hcomplex_Bex"; +val stc_part_Ex = thm "stc_part_Ex"; +val stc_part_Ex1 = thm "stc_part_Ex1"; +val CFinite_Int_CInfinite_empty = thm "CFinite_Int_CInfinite_empty"; +val CFinite_not_CInfinite = thm "CFinite_not_CInfinite"; +val not_CFinite_CInfinite = thm "not_CFinite_CInfinite"; +val CInfinite_CFinite_disj = thm "CInfinite_CFinite_disj"; +val CInfinite_CFinite_iff = thm "CInfinite_CFinite_iff"; +val CFinite_CInfinite_iff = thm "CFinite_CInfinite_iff"; +val CInfinite_diff_CFinite_CInfinitesimal_disj = thm "CInfinite_diff_CFinite_CInfinitesimal_disj"; +val CFinite_inverse = thm "CFinite_inverse"; +val CFinite_inverse2 = thm "CFinite_inverse2"; +val CInfinitesimal_inverse_CFinite = thm "CInfinitesimal_inverse_CFinite"; +val CFinite_not_CInfinitesimal_inverse = thm "CFinite_not_CInfinitesimal_inverse"; +val capprox_inverse = thm "capprox_inverse"; +val hcomplex_of_complex_capprox_inverse = thms "hcomplex_of_complex_capprox_inverse"; +val inverse_add_CInfinitesimal_capprox = thm "inverse_add_CInfinitesimal_capprox"; +val inverse_add_CInfinitesimal_capprox2 = thm "inverse_add_CInfinitesimal_capprox2"; +val inverse_add_CInfinitesimal_approx_CInfinitesimal = thm "inverse_add_CInfinitesimal_approx_CInfinitesimal"; +val CInfinitesimal_square_iff = thm "CInfinitesimal_square_iff"; +val capprox_CFinite_mult_cancel = thm "capprox_CFinite_mult_cancel"; +val capprox_CFinite_mult_cancel_iff1 = thm "capprox_CFinite_mult_cancel_iff1"; +val capprox_cmonad_iff = thm "capprox_cmonad_iff"; +val CInfinitesimal_cmonad_eq = thm "CInfinitesimal_cmonad_eq"; +val mem_cmonad_iff = thm "mem_cmonad_iff"; +val CInfinitesimal_cmonad_zero_iff = thm "CInfinitesimal_cmonad_zero_iff"; +val cmonad_zero_minus_iff = thm "cmonad_zero_minus_iff"; +val cmonad_zero_hcmod_iff = thm "cmonad_zero_hcmod_iff"; +val mem_cmonad_self = thm "mem_cmonad_self"; +val stc_capprox_self = thm "stc_capprox_self"; +val stc_SComplex = thm "stc_SComplex"; +val stc_CFinite = thm "stc_CFinite"; +val stc_SComplex_eq = thm "stc_SComplex_eq"; +val stc_hcomplex_of_complex = thm "stc_hcomplex_of_complex"; +val stc_eq_capprox = thm "stc_eq_capprox"; +val capprox_stc_eq = thm "capprox_stc_eq"; +val stc_eq_capprox_iff = thm "stc_eq_capprox_iff"; +val stc_CInfinitesimal_add_SComplex = thm "stc_CInfinitesimal_add_SComplex"; +val stc_CInfinitesimal_add_SComplex2 = thm "stc_CInfinitesimal_add_SComplex2"; +val CFinite_stc_CInfinitesimal_add = thm "CFinite_stc_CInfinitesimal_add"; +val stc_add = thm "stc_add"; +val stc_number_of = thm "stc_number_of"; +val stc_zero = thm "stc_zero"; +val stc_one = thm "stc_one"; +val stc_minus = thm "stc_minus"; +val stc_diff = thm "stc_diff"; +val lemma_stc_mult = thm "lemma_stc_mult"; +val stc_mult = thm "stc_mult"; +val stc_CInfinitesimal = thm "stc_CInfinitesimal"; +val stc_not_CInfinitesimal = thm "stc_not_CInfinitesimal"; +val stc_inverse = thm "stc_inverse"; +val stc_divide = thm "stc_divide"; +val stc_idempotent = thm "stc_idempotent"; +val CFinite_HFinite_hcomplex_of_hypreal = thm "CFinite_HFinite_hcomplex_of_hypreal"; +val SComplex_SReal_hcomplex_of_hypreal = thm "SComplex_SReal_hcomplex_of_hypreal"; +val stc_hcomplex_of_hypreal = thm "stc_hcomplex_of_hypreal"; +val CInfinitesimal_hcnj_iff = thm "CInfinitesimal_hcnj_iff"; +val CInfinite_HInfinite_iff = thm "CInfinite_HInfinite_iff"; +val hcomplex_split_CInfinitesimal_iff = thm "hcomplex_split_CInfinitesimal_iff"; +val hcomplex_split_CFinite_iff = thm "hcomplex_split_CFinite_iff"; +val hcomplex_split_SComplex_iff = thm "hcomplex_split_SComplex_iff"; +val hcomplex_split_CInfinite_iff = thm "hcomplex_split_CInfinite_iff"; +val hcomplex_split_capprox_iff = thm "hcomplex_split_capprox_iff"; +val complex_seq_to_hcomplex_CInfinitesimal = thm "complex_seq_to_hcomplex_CInfinitesimal"; +val CInfinitesimal_hcomplex_of_hypreal_epsilon = thm "CInfinitesimal_hcomplex_of_hypreal_epsilon"; +val hcomplex_of_complex_approx_zero_iff = thm "hcomplex_of_complex_approx_zero_iff"; +val hcomplex_of_complex_approx_zero_iff2 = thm "hcomplex_of_complex_approx_zero_iff2"; +*} + end diff -r 043bf0d9e9b5 -r 0cc42bb96330 src/HOL/IsaMakefile --- a/src/HOL/IsaMakefile Sat Feb 21 20:05:16 2004 +0100 +++ b/src/HOL/IsaMakefile Mon Feb 23 16:35:46 2004 +0100 @@ -160,8 +160,7 @@ Hyperreal/Transcendental.thy Hyperreal/fuf.ML Hyperreal/hypreal_arith.ML \ Complex/Complex_Main.thy Complex/CLim.thy Complex/CSeries.thy\ Complex/CStar.thy Complex/Complex.thy Complex/ComplexBin.thy\ - Complex/NSCA.ML Complex/NSCA.thy\ - Complex/NSComplex.thy + Complex/NSCA.thy Complex/NSComplex.thy @cd Complex; $(ISATOOL) usedir -b $(OUT)/HOL HOL-Complex