# HG changeset patch # User wenzelm # Date 1194548880 -3600 # Node ID 0d46bea017418c1fc2fc6037a51f809f65507596 # Parent 510b469878867eb1ca740f125676862d59b88261 eliminated illegal schematic variables in where/of; tuned; diff -r 510b46987886 -r 0d46bea01741 src/HOL/IntDef.thy --- a/src/HOL/IntDef.thy Thu Nov 08 20:07:58 2007 +0100 +++ b/src/HOL/IntDef.thy Thu Nov 08 20:08:00 2007 +0100 @@ -677,51 +677,51 @@ by (cases z rule: int_cases) auto text{*Contributed by Brian Huffman*} -theorem int_diff_cases [case_names diff]: -assumes prem: "!!m n. (z\int) = of_nat m - of_nat n ==> P" shows "P" +theorem int_diff_cases: + obtains (diff) m n where "(z\int) = of_nat m - of_nat n" apply (cases z rule: eq_Abs_Integ) -apply (rule_tac m=x and n=y in prem) +apply (rule_tac m=x and n=y in diff) apply (simp add: int_def diff_def minus add) done subsection {* Legacy theorems *} -lemmas zminus_zminus = minus_minus [of "?z::int"] +lemmas zminus_zminus = minus_minus [of "z::int", standard] lemmas zminus_0 = minus_zero [where 'a=int] -lemmas zminus_zadd_distrib = minus_add_distrib [of "?z::int" "?w"] -lemmas zadd_commute = add_commute [of "?z::int" "?w"] -lemmas zadd_assoc = add_assoc [of "?z1.0::int" "?z2.0" "?z3.0"] -lemmas zadd_left_commute = add_left_commute [of "?x::int" "?y" "?z"] +lemmas zminus_zadd_distrib = minus_add_distrib [of "z::int" "w", standard] +lemmas zadd_commute = add_commute [of "z::int" "w", standard] +lemmas zadd_assoc = add_assoc [of "z1::int" "z2" "z3", standard] +lemmas zadd_left_commute = add_left_commute [of "x::int" "y" "z", standard] lemmas zadd_ac = zadd_assoc zadd_commute zadd_left_commute lemmas zmult_ac = OrderedGroup.mult_ac -lemmas zadd_0 = OrderedGroup.add_0_left [of "?z::int"] -lemmas zadd_0_right = OrderedGroup.add_0_left [of "?z::int"] -lemmas zadd_zminus_inverse2 = left_minus [of "?z::int"] -lemmas zmult_zminus = mult_minus_left [of "?z::int" "?w"] -lemmas zmult_commute = mult_commute [of "?z::int" "?w"] -lemmas zmult_assoc = mult_assoc [of "?z1.0::int" "?z2.0" "?z3.0"] -lemmas zadd_zmult_distrib = left_distrib [of "?z1.0::int" "?z2.0" "?w"] -lemmas zadd_zmult_distrib2 = right_distrib [of "?w::int" "?z1.0" "?z2.0"] -lemmas zdiff_zmult_distrib = left_diff_distrib [of "?z1.0::int" "?z2.0" "?w"] -lemmas zdiff_zmult_distrib2 = right_diff_distrib [of "?w::int" "?z1.0" "?z2.0"] +lemmas zadd_0 = OrderedGroup.add_0_left [of "z::int", standard] +lemmas zadd_0_right = OrderedGroup.add_0_left [of "z::int", standard] +lemmas zadd_zminus_inverse2 = left_minus [of "z::int", standard] +lemmas zmult_zminus = mult_minus_left [of "z::int" "w", standard] +lemmas zmult_commute = mult_commute [of "z::int" "w", standard] +lemmas zmult_assoc = mult_assoc [of "z1::int" "z2" "z3", standard] +lemmas zadd_zmult_distrib = left_distrib [of "z1::int" "z2" "w", standard] +lemmas zadd_zmult_distrib2 = right_distrib [of "w::int" "z1" "z2", standard] +lemmas zdiff_zmult_distrib = left_diff_distrib [of "z1::int" "z2" "w", standard] +lemmas zdiff_zmult_distrib2 = right_diff_distrib [of "w::int" "z1" "z2", standard] lemmas int_distrib = zadd_zmult_distrib zadd_zmult_distrib2 zdiff_zmult_distrib zdiff_zmult_distrib2 -lemmas zmult_1 = mult_1_left [of "?z::int"] -lemmas zmult_1_right = mult_1_right [of "?z::int"] +lemmas zmult_1 = mult_1_left [of "z::int", standard] +lemmas zmult_1_right = mult_1_right [of "z::int", standard] -lemmas zle_refl = order_refl [of "?w::int"] -lemmas zle_trans = order_trans [where 'a=int and x="?i" and y="?j" and z="?k"] -lemmas zle_anti_sym = order_antisym [of "?z::int" "?w"] -lemmas zle_linear = linorder_linear [of "?z::int" "?w"] +lemmas zle_refl = order_refl [of "w::int", standard] +lemmas zle_trans = order_trans [where 'a=int and x="i" and y="j" and z="k", standard] +lemmas zle_anti_sym = order_antisym [of "z::int" "w", standard] +lemmas zle_linear = linorder_linear [of "z::int" "w", standard] lemmas zless_linear = linorder_less_linear [where 'a = int] -lemmas zadd_left_mono = add_left_mono [of "?i::int" "?j" "?k"] -lemmas zadd_strict_right_mono = add_strict_right_mono [of "?i::int" "?j" "?k"] -lemmas zadd_zless_mono = add_less_le_mono [of "?w'::int" "?w" "?z'" "?z"] +lemmas zadd_left_mono = add_left_mono [of "i::int" "j" "k", standard] +lemmas zadd_strict_right_mono = add_strict_right_mono [of "i::int" "j" "k", standard] +lemmas zadd_zless_mono = add_less_le_mono [of "w'::int" "w" "z'" "z", standard] lemmas int_0_less_1 = zero_less_one [where 'a=int] lemmas int_0_neq_1 = zero_neq_one [where 'a=int] @@ -731,17 +731,17 @@ lemmas zadd_int = of_nat_add [where 'a=int, symmetric] lemmas int_mult = of_nat_mult [where 'a=int] lemmas zmult_int = of_nat_mult [where 'a=int, symmetric] -lemmas int_eq_0_conv = of_nat_eq_0_iff [where 'a=int and m="?n"] +lemmas int_eq_0_conv = of_nat_eq_0_iff [where 'a=int and m="n", standard] lemmas zless_int = of_nat_less_iff [where 'a=int] -lemmas int_less_0_conv = of_nat_less_0_iff [where 'a=int and m="?k"] +lemmas int_less_0_conv = of_nat_less_0_iff [where 'a=int and m="k", standard] lemmas zero_less_int_conv = of_nat_0_less_iff [where 'a=int] lemmas zle_int = of_nat_le_iff [where 'a=int] lemmas zero_zle_int = of_nat_0_le_iff [where 'a=int] -lemmas int_le_0_conv = of_nat_le_0_iff [where 'a=int and m="?n"] +lemmas int_le_0_conv = of_nat_le_0_iff [where 'a=int and m="n", standard] lemmas int_0 = of_nat_0 [where 'a=int] lemmas int_1 = of_nat_1 [where 'a=int] lemmas int_Suc = of_nat_Suc [where 'a=int] -lemmas abs_int_eq = abs_of_nat [where 'a=int and n="?m"] +lemmas abs_int_eq = abs_of_nat [where 'a=int and n="m", standard] lemmas of_int_int_eq = of_int_of_nat_eq [where 'a=int] lemmas zdiff_int = of_nat_diff [where 'a=int, symmetric] lemmas zless_le = less_int_def [THEN meta_eq_to_obj_eq] diff -r 510b46987886 -r 0d46bea01741 src/HOL/Word/BinGeneral.thy --- a/src/HOL/Word/BinGeneral.thy Thu Nov 08 20:07:58 2007 +0100 +++ b/src/HOL/Word/BinGeneral.thy Thu Nov 08 20:08:00 2007 +0100 @@ -304,42 +304,42 @@ done lemmas bintrunc_Pls = - bintrunc.Suc [where bin="Numeral.Pls", simplified bin_last_simps bin_rest_simps] + bintrunc.Suc [where bin="Numeral.Pls", simplified bin_last_simps bin_rest_simps, standard] lemmas bintrunc_Min [simp] = - bintrunc.Suc [where bin="Numeral.Min", simplified bin_last_simps bin_rest_simps] + bintrunc.Suc [where bin="Numeral.Min", simplified bin_last_simps bin_rest_simps, standard] lemmas bintrunc_BIT [simp] = - bintrunc.Suc [where bin="?w BIT ?b", simplified bin_last_simps bin_rest_simps] + bintrunc.Suc [where bin="w BIT b", simplified bin_last_simps bin_rest_simps, standard] lemmas bintrunc_Sucs = bintrunc_Pls bintrunc_Min bintrunc_BIT lemmas sbintrunc_Suc_Pls = - sbintrunc.Suc [where bin="Numeral.Pls", simplified bin_last_simps bin_rest_simps] + sbintrunc.Suc [where bin="Numeral.Pls", simplified bin_last_simps bin_rest_simps, standard] lemmas sbintrunc_Suc_Min = - sbintrunc.Suc [where bin="Numeral.Min", simplified bin_last_simps bin_rest_simps] + sbintrunc.Suc [where bin="Numeral.Min", simplified bin_last_simps bin_rest_simps, standard] lemmas sbintrunc_Suc_BIT [simp] = - sbintrunc.Suc [where bin="?w BIT ?b", simplified bin_last_simps bin_rest_simps] + sbintrunc.Suc [where bin="w BIT b", simplified bin_last_simps bin_rest_simps, standard] lemmas sbintrunc_Sucs = sbintrunc_Suc_Pls sbintrunc_Suc_Min sbintrunc_Suc_BIT lemmas sbintrunc_Pls = sbintrunc.Z [where bin="Numeral.Pls", - simplified bin_last_simps bin_rest_simps bit.simps] + simplified bin_last_simps bin_rest_simps bit.simps, standard] lemmas sbintrunc_Min = sbintrunc.Z [where bin="Numeral.Min", - simplified bin_last_simps bin_rest_simps bit.simps] + simplified bin_last_simps bin_rest_simps bit.simps, standard] lemmas sbintrunc_0_BIT_B0 [simp] = - sbintrunc.Z [where bin="?w BIT bit.B0", - simplified bin_last_simps bin_rest_simps bit.simps] + sbintrunc.Z [where bin="w BIT bit.B0", + simplified bin_last_simps bin_rest_simps bit.simps, standard] lemmas sbintrunc_0_BIT_B1 [simp] = - sbintrunc.Z [where bin="?w BIT bit.B1", - simplified bin_last_simps bin_rest_simps bit.simps] + sbintrunc.Z [where bin="w BIT bit.B1", + simplified bin_last_simps bin_rest_simps bit.simps, standard] lemmas sbintrunc_0_simps = sbintrunc_Pls sbintrunc_Min sbintrunc_0_BIT_B0 sbintrunc_0_BIT_B1 @@ -369,7 +369,7 @@ "sbintrunc n Numeral.Min = Numeral.Min" by (induct n) auto -lemmas thobini1 = arg_cong [where f = "%w. w BIT ?b"] +lemmas thobini1 = arg_cong [where f = "%w. w BIT b", standard] lemmas bintrunc_BIT_I = trans [OF bintrunc_BIT thobini1] lemmas bintrunc_Min_I = trans [OF bintrunc_Min thobini1] @@ -500,29 +500,35 @@ apply (auto intro: int_mod_lem [THEN iffD1, symmetric]) done -lemmas sb_inc_lem = int_mod_ge' - [where n = "2 ^ (Suc ?k)" and b = "?a + 2 ^ ?k", - simplified zless2p, OF _ TrueI] +lemma sb_inc_lem: + "(a::int) + 2^k < 0 \ a + 2^k + 2^(Suc k) <= (a + 2^k) mod 2^(Suc k)" + apply (erule int_mod_ge' [where n = "2 ^ (Suc k)" and b = "a + 2 ^ k", simplified zless2p]) + apply (rule TrueI) + done -lemmas sb_inc_lem' = - iffD1 [OF less_diff_eq, THEN sb_inc_lem, simplified OrderedGroup.diff_0] +lemma sb_inc_lem': + "(a::int) < - (2^k) \ a + 2^k + 2^(Suc k) <= (a + 2^k) mod 2^(Suc k)" + by (rule iffD1 [OF less_diff_eq, THEN sb_inc_lem, simplified OrderedGroup.diff_0]) lemma sbintrunc_inc: - "x < - (2 ^ n) ==> x + 2 ^ (Suc n) <= sbintrunc n x" + "x < - (2^n) ==> x + 2^(Suc n) <= sbintrunc n x" unfolding no_sbintr_alt2 by (drule sb_inc_lem') simp -lemmas sb_dec_lem = int_mod_le' - [where n = "2 ^ (Suc ?k)" and b = "?a + 2 ^ ?k", - simplified zless2p, OF _ TrueI, simplified] +lemma sb_dec_lem: + "(0::int) <= - (2^k) + a ==> (a + 2^k) mod (2 * 2 ^ k) <= - (2 ^ k) + a" + by (rule int_mod_le' [where n = "2 ^ (Suc k)" and b = "a + 2 ^ k", + simplified zless2p, OF _ TrueI, simplified]) -lemmas sb_dec_lem' = iffD1 [OF diff_le_eq', THEN sb_dec_lem, simplified] +lemma sb_dec_lem': + "(2::int) ^ k <= a ==> (a + 2 ^ k) mod (2 * 2 ^ k) <= - (2 ^ k) + a" + by (rule iffD1 [OF diff_le_eq', THEN sb_dec_lem, simplified]) lemma sbintrunc_dec: "x >= (2 ^ n) ==> x - 2 ^ (Suc n) >= sbintrunc n x" unfolding no_sbintr_alt2 by (drule sb_dec_lem') simp -lemmas zmod_uminus' = zmod_uminus [where b="?c"] -lemmas zpower_zmod' = zpower_zmod [where m="?c" and y="?k"] +lemmas zmod_uminus' = zmod_uminus [where b="c", standard] +lemmas zpower_zmod' = zpower_zmod [where m="c" and y="k", standard] lemmas brdmod1s' [symmetric] = zmod_zadd_left_eq zmod_zadd_right_eq @@ -539,11 +545,11 @@ zmod_zsub_left_eq [where b = "1"] lemmas bintr_arith1s = - brdmod1s' [where c="2^?n", folded pred_def succ_def bintrunc_mod2p] + brdmod1s' [where c="2^n", folded pred_def succ_def bintrunc_mod2p, standard] lemmas bintr_ariths = - brdmods' [where c="2^?n", folded pred_def succ_def bintrunc_mod2p] + brdmods' [where c="2^n", folded pred_def succ_def bintrunc_mod2p, standard] -lemmas m2pths [OF zless2p, standard] = pos_mod_sign pos_mod_bound +lemmas m2pths = pos_mod_sign pos_mod_bound [OF zless2p, standard] lemma bintr_ge0: "(0 :: int) <= number_of (bintrunc n w)" by (simp add : no_bintr m2pths) @@ -666,14 +672,14 @@ lemmas replicate_pred_simp [simp] = replicate_minus_simp [of "number_of bin", simplified nobm1, standard] -lemmas power_Suc_no [simp] = power_Suc [of "number_of ?a"] +lemmas power_Suc_no [simp] = power_Suc [of "number_of a", standard] lemmas power_minus_simp = trans [OF gen_minus [where f = "power f"] power_Suc, standard] lemmas power_pred_simp = power_minus_simp [of "number_of bin", simplified nobm1, standard] -lemmas power_pred_simp_no [simp] = power_pred_simp [where f= "number_of ?f"] +lemmas power_pred_simp_no [simp] = power_pred_simp [where f= "number_of f", standard] lemma list_exhaust_size_gt0: assumes y: "\a list. y = a # list \ P" diff -r 510b46987886 -r 0d46bea01741 src/HOL/Word/Num_Lemmas.thy --- a/src/HOL/Word/Num_Lemmas.thy Thu Nov 08 20:07:58 2007 +0100 +++ b/src/HOL/Word/Num_Lemmas.thy Thu Nov 08 20:08:00 2007 +0100 @@ -288,9 +288,9 @@ apply (simp add : zmod_uminus zmod_zadd_right_eq [symmetric]) done -lemmas zmod_zsub_left_eq = - zmod_zadd_left_eq [where b = "- ?b", simplified diff_int_def [symmetric]] - +lemma zmod_zsub_left_eq: "((a::int) - b) mod c = (a mod c - b) mod c" + by (rule zmod_zadd_left_eq [where b = "- b", simplified diff_int_def [symmetric]]) + lemma zmod_zsub_self [simp]: "((b :: int) - a) mod a = b mod a" by (simp add: zmod_zsub_right_eq) @@ -378,7 +378,8 @@ apply (auto dest: mod_pos_pos_trivial pos_mod_bound [where a=a]) done -lemmas int_mod_le' = int_mod_le [where a = "?b - ?n", simplified] +lemma int_mod_le': "0 <= b - n ==> 0 < (n :: int) ==> b mod n <= b - n" + by (rule int_mod_le [where a = "b - n" and n = n, simplified]) lemma int_mod_ge: "a < n ==> 0 < (n :: int) ==> a <= a mod n" apply (cases "0 <= a") @@ -389,7 +390,8 @@ apply assumption done -lemmas int_mod_ge' = int_mod_ge [where a = "?b + ?n", simplified] +lemma int_mod_ge': "b < 0 ==> 0 < (n :: int) ==> b + n <= b mod n" + by (rule int_mod_ge [where a = "b + n" and n = n, simplified]) lemma mod_add_if_z: "(x :: int) < z ==> y < z ==> 0 <= y ==> 0 <= x ==> 0 <= z ==> diff -r 510b46987886 -r 0d46bea01741 src/HOL/Word/WordDefinition.thy --- a/src/HOL/Word/WordDefinition.thy Thu Nov 08 20:07:58 2007 +0100 +++ b/src/HOL/Word/WordDefinition.thy Thu Nov 08 20:08:00 2007 +0100 @@ -402,7 +402,7 @@ bin_to_bl (len_of TYPE('a)) o uint" by (auto simp: to_bl_def intro: ext) -lemmas word_reverse_no_def [simp] = word_reverse_def [of "number_of ?w"] +lemmas word_reverse_no_def [simp] = word_reverse_def [of "number_of w", standard] lemmas uints_mod = uints_def [unfolded no_bintr_alt1] @@ -673,8 +673,7 @@ done lemma unats_uints: "unats n = nat ` uints n" - apply (auto simp add : uints_unats image_iff) - done + by (auto simp add : uints_unats image_iff) lemmas bintr_num = word_ubin.norm_eq_iff [symmetric, folded word_number_of_def, standard] diff -r 510b46987886 -r 0d46bea01741 src/HOL/Word/WordGenLib.thy --- a/src/HOL/Word/WordGenLib.thy Thu Nov 08 20:07:58 2007 +0100 +++ b/src/HOL/Word/WordGenLib.thy Thu Nov 08 20:08:00 2007 +0100 @@ -263,9 +263,9 @@ by (simp add: unat_sub_if_size order_le_less word_less_nat_alt) lemmas word_less_sub1_numberof [simp] = - word_less_sub1 [of "number_of ?w"] + word_less_sub1 [of "number_of w", standard] lemmas word_le_sub1_numberof [simp] = - word_le_sub1 [of "number_of ?w"] + word_le_sub1 [of "number_of w", standard] lemma word_of_int_minus: "word_of_int (2^len_of TYPE('a) - i) = (word_of_int (-i)::'a::len word)" @@ -396,7 +396,7 @@ apply simp apply (case_tac "1 + (n - m) = 0") apply (simp add: word_rec_0) - apply (rule arg_cong[where f="word_rec ?a ?b"]) + apply (rule_tac f = "word_rec ?a ?b" in arg_cong) apply (rule_tac t="m" and s="m + (1 + (n - m))" in subst) apply simp apply (simp (no_asm_use))