# HG changeset patch # User haftmann # Date 1312914288 -7200 # Node ID 0e018cbcc0de519b9422076e01c907ebe46b1f70 # Parent 04e51b7a342235d56790371c970904f397564a2a tuned proofs diff -r 04e51b7a3422 -r 0e018cbcc0de src/HOL/Algebra/Ideal.thy --- a/src/HOL/Algebra/Ideal.thy Tue Aug 09 18:52:18 2011 +0200 +++ b/src/HOL/Algebra/Ideal.thy Tue Aug 09 20:24:48 2011 +0200 @@ -227,26 +227,14 @@ and notempty: "S \ {}" shows "ideal (Inter S) R" apply (unfold_locales) -apply (simp_all add: Inter_def INTER_def) - apply (rule, simp) defer 1 +apply (simp_all add: Inter_eq) + apply rule unfolding mem_Collect_eq defer 1 apply rule defer 1 apply rule defer 1 apply (fold a_inv_def, rule) defer 1 apply rule defer 1 apply rule defer 1 proof - - fix x - assume "\I\S. x \ I" - hence xI: "\I. I \ S \ x \ I" by simp - - from notempty have "\I0. I0 \ S" by blast - from this obtain I0 where I0S: "I0 \ S" by auto - - interpret ideal I0 R by (rule Sideals[OF I0S]) - - from xI[OF I0S] have "x \ I0" . - from this and a_subset show "x \ carrier R" by fast -next fix x y assume "\I\S. x \ I" hence xI: "\I. I \ S \ x \ I" by simp @@ -298,6 +286,20 @@ from xI[OF JS] and ycarr show "x \ y \ J" by (rule I_r_closed) +next + fix x + assume "\I\S. x \ I" + hence xI: "\I. I \ S \ x \ I" by simp + + from notempty have "\I0. I0 \ S" by blast + from this obtain I0 where I0S: "I0 \ S" by auto + + interpret ideal I0 R by (rule Sideals[OF I0S]) + + from xI[OF I0S] have "x \ I0" . + from this and a_subset show "x \ carrier R" by fast +next + qed diff -r 04e51b7a3422 -r 0e018cbcc0de src/HOL/Import/HOLLight/hollight.imp --- a/src/HOL/Import/HOLLight/hollight.imp Tue Aug 09 18:52:18 2011 +0200 +++ b/src/HOL/Import/HOLLight/hollight.imp Tue Aug 09 20:24:48 2011 +0200 @@ -590,7 +590,6 @@ "UNIONS_INSERT" > "Complete_Lattice.Union_insert" "UNIONS_IMAGE" > "HOLLight.hollight.UNIONS_IMAGE" "UNIONS_GSPEC" > "HOLLight.hollight.UNIONS_GSPEC" - "UNIONS_2" > "Complete_Lattice.Un_eq_Union" "UNIONS_0" > "Complete_Lattice.Union_empty" "UNCURRY_def" > "HOLLight.hollight.UNCURRY_def" "TYDEF_recspace" > "HOLLight.hollight.TYDEF_recspace" @@ -1596,7 +1595,6 @@ "INTERS_INSERT" > "Complete_Lattice.Inter_insert" "INTERS_IMAGE" > "HOLLight.hollight.INTERS_IMAGE" "INTERS_GSPEC" > "HOLLight.hollight.INTERS_GSPEC" - "INTERS_2" > "Complete_Lattice.Int_eq_Inter" "INTERS_0" > "Complete_Lattice.Inter_empty" "INSERT_UNIV" > "HOLLight.hollight.INSERT_UNIV" "INSERT_UNION_EQ" > "Set.Un_insert_left" diff -r 04e51b7a3422 -r 0e018cbcc0de src/HOL/Number_Theory/MiscAlgebra.thy --- a/src/HOL/Number_Theory/MiscAlgebra.thy Tue Aug 09 18:52:18 2011 +0200 +++ b/src/HOL/Number_Theory/MiscAlgebra.thy Tue Aug 09 20:24:48 2011 +0200 @@ -8,7 +8,7 @@ imports "~~/src/HOL/Algebra/Ring" "~~/src/HOL/Algebra/FiniteProduct" -begin; +begin (* finiteness stuff *) @@ -34,7 +34,7 @@ definition units_of :: "('a, 'b) monoid_scheme => 'a monoid" where "units_of G == (| carrier = Units G, Group.monoid.mult = Group.monoid.mult G, - one = one G |)"; + one = one G |)" (* @@ -264,7 +264,7 @@ (ALL A:C. ALL B:C. A ~= B --> A Int B = {}) |] ==> finprod G f (Union C) = finprod G (finprod G f) C" apply (frule finprod_UN_disjoint [of C id f]) - apply (unfold Union_def id_def, auto) + apply (auto simp add: SUP_def) done lemma (in comm_monoid) finprod_one [rule_format]: diff -r 04e51b7a3422 -r 0e018cbcc0de src/HOL/Probability/Caratheodory.thy --- a/src/HOL/Probability/Caratheodory.thy Tue Aug 09 18:52:18 2011 +0200 +++ b/src/HOL/Probability/Caratheodory.thy Tue Aug 09 20:24:48 2011 +0200 @@ -6,7 +6,7 @@ header {*Caratheodory Extension Theorem*} theory Caratheodory - imports Sigma_Algebra Extended_Real_Limits +imports Sigma_Algebra "~~/src/HOL/Multivariate_Analysis/Extended_Real_Limits" begin lemma sums_def2: @@ -433,8 +433,7 @@ hence eq_fa: "f a = f (a \ (\i\{0..i\{0..i. A i)) \ f (a - (\i\{0..i A i)) + f (a - (\i. A i)) \ f a" by (simp add: lambda_system_strong_sum pos A disj eq_fa add_left_mono atLeast0LessThan[symmetric]) next diff -r 04e51b7a3422 -r 0e018cbcc0de src/HOL/Probability/Sigma_Algebra.thy --- a/src/HOL/Probability/Sigma_Algebra.thy Tue Aug 09 18:52:18 2011 +0200 +++ b/src/HOL/Probability/Sigma_Algebra.thy Tue Aug 09 20:24:48 2011 +0200 @@ -315,10 +315,10 @@ by (auto simp add: binary_def) lemma Un_range_binary: "a \ b = (\i::nat. binary a b i)" - by (simp add: UNION_eq_Union_image range_binary_eq) + by (simp add: SUP_def range_binary_eq) lemma Int_range_binary: "a \ b = (\i::nat. binary a b i)" - by (simp add: INTER_eq_Inter_image range_binary_eq) + by (simp add: INF_def range_binary_eq) lemma sigma_algebra_iff2: "sigma_algebra M \ @@ -1109,7 +1109,7 @@ done lemma UN_binaryset_eq: "(\i. binaryset A B i) = A \ B" - by (simp add: UNION_eq_Union_image range_binaryset_eq) + by (simp add: SUP_def range_binaryset_eq) section {* Closed CDI *} diff -r 04e51b7a3422 -r 0e018cbcc0de src/HOL/UNITY/ELT.thy --- a/src/HOL/UNITY/ELT.thy Tue Aug 09 18:52:18 2011 +0200 +++ b/src/HOL/UNITY/ELT.thy Tue Aug 09 20:24:48 2011 +0200 @@ -186,9 +186,7 @@ lemma leadsETo_Un: "[| F : A leadsTo[CC] C; F : B leadsTo[CC] C |] ==> F : (A Un B) leadsTo[CC] C" -apply (subst Un_eq_Union) -apply (blast intro: leadsETo_Union) -done + using leadsETo_Union [of "{A, B}" F CC C] by auto lemma single_leadsETo_I: "(!!x. x : A ==> F : {x} leadsTo[CC] B) ==> F : A leadsTo[CC] B" @@ -407,9 +405,7 @@ lemma LeadsETo_Un: "[| F : A LeadsTo[CC] C; F : B LeadsTo[CC] C |] ==> F : (A Un B) LeadsTo[CC] C" -apply (subst Un_eq_Union) -apply (blast intro: LeadsETo_Union) -done + using LeadsETo_Union [of "{A, B}" F CC C] by auto (*Lets us look at the starting state*) lemma single_LeadsETo_I: diff -r 04e51b7a3422 -r 0e018cbcc0de src/HOL/UNITY/ProgressSets.thy --- a/src/HOL/UNITY/ProgressSets.thy Tue Aug 09 18:52:18 2011 +0200 +++ b/src/HOL/UNITY/ProgressSets.thy Tue Aug 09 20:24:48 2011 +0200 @@ -42,25 +42,21 @@ lemma UN_in_lattice: "[|lattice L; !!i. i\I ==> r i \ L|] ==> (\i\I. r i) \ L" -apply (simp add: UN_eq) +apply (unfold SUP_def) apply (blast intro: Union_in_lattice) done lemma INT_in_lattice: "[|lattice L; !!i. i\I ==> r i \ L|] ==> (\i\I. r i) \ L" -apply (simp add: INT_eq) +apply (unfold INF_def) apply (blast intro: Inter_in_lattice) done lemma Un_in_lattice: "[|x\L; y\L; lattice L|] ==> x\y \ L" -apply (simp only: Un_eq_Union) -apply (blast intro: Union_in_lattice) -done + using Union_in_lattice [of "{x, y}" L] by simp lemma Int_in_lattice: "[|x\L; y\L; lattice L|] ==> x\y \ L" -apply (simp only: Int_eq_Inter) -apply (blast intro: Inter_in_lattice) -done + using Inter_in_lattice [of "{x, y}" L] by simp lemma lattice_stable: "lattice {X. F \ stable X}" by (simp add: lattice_def stable_def constrains_def, blast) diff -r 04e51b7a3422 -r 0e018cbcc0de src/HOL/UNITY/SubstAx.thy --- a/src/HOL/UNITY/SubstAx.thy Tue Aug 09 18:52:18 2011 +0200 +++ b/src/HOL/UNITY/SubstAx.thy Tue Aug 09 20:24:48 2011 +0200 @@ -85,16 +85,14 @@ lemma LeadsTo_UN: "(!!i. i \ I ==> F \ (A i) LeadsTo B) ==> F \ (\i \ I. A i) LeadsTo B" -apply (simp only: Union_image_eq [symmetric]) +apply (unfold SUP_def) apply (blast intro: LeadsTo_Union) done text{*Binary union introduction rule*} lemma LeadsTo_Un: "[| F \ A LeadsTo C; F \ B LeadsTo C |] ==> F \ (A \ B) LeadsTo C" -apply (subst Un_eq_Union) -apply (blast intro: LeadsTo_Union) -done + using LeadsTo_UN [of "{A, B}" F id C] by auto text{*Lets us look at the starting state*} lemma single_LeadsTo_I: diff -r 04e51b7a3422 -r 0e018cbcc0de src/HOL/UNITY/Transformers.thy --- a/src/HOL/UNITY/Transformers.thy Tue Aug 09 18:52:18 2011 +0200 +++ b/src/HOL/UNITY/Transformers.thy Tue Aug 09 20:24:48 2011 +0200 @@ -467,7 +467,7 @@ "single_valued act ==> insert (wens_single act B) (range (wens_single_finite act B)) \ wens_set (mk_program (init, {act}, allowed)) B" -apply (simp add: wens_single_eq_Union UN_eq) +apply (simp add: SUP_def image_def wens_single_eq_Union) apply (blast intro: wens_set.Union wens_single_finite_in_wens_set) done diff -r 04e51b7a3422 -r 0e018cbcc0de src/HOL/UNITY/WFair.thy --- a/src/HOL/UNITY/WFair.thy Tue Aug 09 18:52:18 2011 +0200 +++ b/src/HOL/UNITY/WFair.thy Tue Aug 09 20:24:48 2011 +0200 @@ -211,9 +211,7 @@ text{*Binary union introduction rule*} lemma leadsTo_Un: "[| F \ A leadsTo C; F \ B leadsTo C |] ==> F \ (A \ B) leadsTo C" -apply (subst Un_eq_Union) -apply (blast intro: leadsTo_Union) -done + using leadsTo_Union [of "{A, B}" F C] by auto lemma single_leadsTo_I: "(!!x. x \ A ==> F \ {x} leadsTo B) ==> F \ A leadsTo B"