# HG changeset patch # User haftmann # Date 1383216260 -3600 # Node ID 0e6645622f22ad199ce50b72fa3aff0637d88818 # Parent 63fe59f64578b098dbec416fe82f9931ee4d7697 more convenient place for a theory in solitariness diff -r 63fe59f64578 -r 0e6645622f22 src/HOL/Decision_Procs/Rat_Pair.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/Decision_Procs/Rat_Pair.thy Thu Oct 31 11:44:20 2013 +0100 @@ -0,0 +1,521 @@ +(* Title: HOL/Decision_Procs/Rat_Pair.thy + Author: Amine Chaieb +*) + +header {* Rational numbers as pairs *} + +theory Rat_Pair +imports Complex_Main +begin + +type_synonym Num = "int \ int" + +abbreviation Num0_syn :: Num ("0\<^sub>N") + where "0\<^sub>N \ (0, 0)" + +abbreviation Numi_syn :: "int \ Num" ("'((_)')\<^sub>N") + where "(i)\<^sub>N \ (i, 1)" + +definition isnormNum :: "Num \ bool" where + "isnormNum = (\(a,b). (if a = 0 then b = 0 else b > 0 \ gcd a b = 1))" + +definition normNum :: "Num \ Num" where + "normNum = (\(a,b). + (if a=0 \ b = 0 then (0,0) else + (let g = gcd a b + in if b > 0 then (a div g, b div g) else (- (a div g), - (b div g)))))" + +declare gcd_dvd1_int[presburger] gcd_dvd2_int[presburger] + +lemma normNum_isnormNum [simp]: "isnormNum (normNum x)" +proof - + obtain a b where x: "x = (a, b)" by (cases x) + { assume "a=0 \ b = 0" hence ?thesis by (simp add: x normNum_def isnormNum_def) } + moreover + { assume anz: "a \ 0" and bnz: "b \ 0" + let ?g = "gcd a b" + let ?a' = "a div ?g" + let ?b' = "b div ?g" + let ?g' = "gcd ?a' ?b'" + from anz bnz have "?g \ 0" by simp with gcd_ge_0_int[of a b] + have gpos: "?g > 0" by arith + have gdvd: "?g dvd a" "?g dvd b" by arith+ + from dvd_mult_div_cancel[OF gdvd(1)] dvd_mult_div_cancel[OF gdvd(2)] anz bnz + have nz': "?a' \ 0" "?b' \ 0" by - (rule notI, simp)+ + from anz bnz have stupid: "a \ 0 \ b \ 0" by arith + from div_gcd_coprime_int[OF stupid] have gp1: "?g' = 1" . + from bnz have "b < 0 \ b > 0" by arith + moreover + { assume b: "b > 0" + from b have "?b' \ 0" + by (presburger add: pos_imp_zdiv_nonneg_iff[OF gpos]) + with nz' have b': "?b' > 0" by arith + from b b' anz bnz nz' gp1 have ?thesis + by (simp add: x isnormNum_def normNum_def Let_def split_def) } + moreover { + assume b: "b < 0" + { assume b': "?b' \ 0" + from gpos have th: "?g \ 0" by arith + from mult_nonneg_nonneg[OF th b'] dvd_mult_div_cancel[OF gdvd(2)] + have False using b by arith } + hence b': "?b' < 0" by (presburger add: linorder_not_le[symmetric]) + from anz bnz nz' b b' gp1 have ?thesis + by (simp add: x isnormNum_def normNum_def Let_def split_def) } + ultimately have ?thesis by blast + } + ultimately show ?thesis by blast +qed + +text {* Arithmetic over Num *} + +definition Nadd :: "Num \ Num \ Num" (infixl "+\<^sub>N" 60) where + "Nadd = (\(a,b) (a',b'). if a = 0 \ b = 0 then normNum(a',b') + else if a'=0 \ b' = 0 then normNum(a,b) + else normNum(a*b' + b*a', b*b'))" + +definition Nmul :: "Num \ Num \ Num" (infixl "*\<^sub>N" 60) where + "Nmul = (\(a,b) (a',b'). let g = gcd (a*a') (b*b') + in (a*a' div g, b*b' div g))" + +definition Nneg :: "Num \ Num" ("~\<^sub>N") + where "Nneg \ (\(a,b). (-a,b))" + +definition Nsub :: "Num \ Num \ Num" (infixl "-\<^sub>N" 60) + where "Nsub = (\a b. a +\<^sub>N ~\<^sub>N b)" + +definition Ninv :: "Num \ Num" + where "Ninv = (\(a,b). if a < 0 then (-b, \a\) else (b,a))" + +definition Ndiv :: "Num \ Num \ Num" (infixl "\
\<^sub>N" 60) + where "Ndiv = (\a b. a *\<^sub>N Ninv b)" + +lemma Nneg_normN[simp]: "isnormNum x \ isnormNum (~\<^sub>N x)" + by (simp add: isnormNum_def Nneg_def split_def) + +lemma Nadd_normN[simp]: "isnormNum (x +\<^sub>N y)" + by (simp add: Nadd_def split_def) + +lemma Nsub_normN[simp]: "\ isnormNum y\ \ isnormNum (x -\<^sub>N y)" + by (simp add: Nsub_def split_def) + +lemma Nmul_normN[simp]: + assumes xn: "isnormNum x" and yn: "isnormNum y" + shows "isnormNum (x *\<^sub>N y)" +proof - + obtain a b where x: "x = (a, b)" by (cases x) + obtain a' b' where y: "y = (a', b')" by (cases y) + { assume "a = 0" + hence ?thesis using xn x y + by (simp add: isnormNum_def Let_def Nmul_def split_def) } + moreover + { assume "a' = 0" + hence ?thesis using yn x y + by (simp add: isnormNum_def Let_def Nmul_def split_def) } + moreover + { assume a: "a \0" and a': "a'\0" + hence bp: "b > 0" "b' > 0" using xn yn x y by (simp_all add: isnormNum_def) + from mult_pos_pos[OF bp] have "x *\<^sub>N y = normNum (a * a', b * b')" + using x y a a' bp by (simp add: Nmul_def Let_def split_def normNum_def) + hence ?thesis by simp } + ultimately show ?thesis by blast +qed + +lemma Ninv_normN[simp]: "isnormNum x \ isnormNum (Ninv x)" + by (simp add: Ninv_def isnormNum_def split_def) + (cases "fst x = 0", auto simp add: gcd_commute_int) + +lemma isnormNum_int[simp]: + "isnormNum 0\<^sub>N" "isnormNum ((1::int)\<^sub>N)" "i \ 0 \ isnormNum (i)\<^sub>N" + by (simp_all add: isnormNum_def) + + +text {* Relations over Num *} + +definition Nlt0:: "Num \ bool" ("0>\<^sub>N") + where "Nlt0 = (\(a,b). a < 0)" + +definition Nle0:: "Num \ bool" ("0\\<^sub>N") + where "Nle0 = (\(a,b). a \ 0)" + +definition Ngt0:: "Num \ bool" ("0<\<^sub>N") + where "Ngt0 = (\(a,b). a > 0)" + +definition Nge0:: "Num \ bool" ("0\\<^sub>N") + where "Nge0 = (\(a,b). a \ 0)" + +definition Nlt :: "Num \ Num \ bool" (infix "<\<^sub>N" 55) + where "Nlt = (\a b. 0>\<^sub>N (a -\<^sub>N b))" + +definition Nle :: "Num \ Num \ bool" (infix "\\<^sub>N" 55) + where "Nle = (\a b. 0\\<^sub>N (a -\<^sub>N b))" + +definition "INum = (\(a,b). of_int a / of_int b)" + +lemma INum_int [simp]: "INum (i)\<^sub>N = ((of_int i) ::'a::field)" "INum 0\<^sub>N = (0::'a::field)" + by (simp_all add: INum_def) + +lemma isnormNum_unique[simp]: + assumes na: "isnormNum x" and nb: "isnormNum y" + shows "((INum x ::'a::{field_char_0, field_inverse_zero}) = INum y) = (x = y)" (is "?lhs = ?rhs") +proof + obtain a b where x: "x = (a, b)" by (cases x) + obtain a' b' where y: "y = (a', b')" by (cases y) + assume H: ?lhs + { assume "a = 0 \ b = 0 \ a' = 0 \ b' = 0" + hence ?rhs using na nb H + by (simp add: x y INum_def split_def isnormNum_def split: split_if_asm) } + moreover + { assume az: "a \ 0" and bz: "b \ 0" and a'z: "a'\0" and b'z: "b'\0" + from az bz a'z b'z na nb have pos: "b > 0" "b' > 0" by (simp_all add: x y isnormNum_def) + from H bz b'z have eq: "a * b' = a'*b" + by (simp add: x y INum_def eq_divide_eq divide_eq_eq of_int_mult[symmetric] del: of_int_mult) + from az a'z na nb have gcd1: "gcd a b = 1" "gcd b a = 1" "gcd a' b' = 1" "gcd b' a' = 1" + by (simp_all add: x y isnormNum_def add: gcd_commute_int) + from eq have raw_dvd: "a dvd a' * b" "b dvd b' * a" "a' dvd a * b'" "b' dvd b * a'" + apply - + apply algebra + apply algebra + apply simp + apply algebra + done + from zdvd_antisym_abs[OF coprime_dvd_mult_int[OF gcd1(2) raw_dvd(2)] + coprime_dvd_mult_int[OF gcd1(4) raw_dvd(4)]] + have eq1: "b = b'" using pos by arith + with eq have "a = a'" using pos by simp + with eq1 have ?rhs by (simp add: x y) } + ultimately show ?rhs by blast +next + assume ?rhs thus ?lhs by simp +qed + + +lemma isnormNum0[simp]: + "isnormNum x \ (INum x = (0::'a::{field_char_0, field_inverse_zero})) = (x = 0\<^sub>N)" + unfolding INum_int(2)[symmetric] + by (rule isnormNum_unique) simp_all + +lemma of_int_div_aux: "d ~= 0 ==> ((of_int x)::'a::field_char_0) / (of_int d) = + of_int (x div d) + (of_int (x mod d)) / ((of_int d)::'a)" +proof - + assume "d ~= 0" + let ?t = "of_int (x div d) * ((of_int d)::'a) + of_int(x mod d)" + let ?f = "\x. x / of_int d" + have "x = (x div d) * d + x mod d" + by auto + then have eq: "of_int x = ?t" + by (simp only: of_int_mult[symmetric] of_int_add [symmetric]) + then have "of_int x / of_int d = ?t / of_int d" + using cong[OF refl[of ?f] eq] by simp + then show ?thesis by (simp add: add_divide_distrib algebra_simps `d ~= 0`) +qed + +lemma of_int_div: "(d::int) ~= 0 ==> d dvd n ==> + (of_int(n div d)::'a::field_char_0) = of_int n / of_int d" + apply (frule of_int_div_aux [of d n, where ?'a = 'a]) + apply simp + apply (simp add: dvd_eq_mod_eq_0) + done + + +lemma normNum[simp]: "INum (normNum x) = (INum x :: 'a::{field_char_0, field_inverse_zero})" +proof - + obtain a b where x: "x = (a, b)" by (cases x) + { assume "a = 0 \ b = 0" + hence ?thesis by (simp add: x INum_def normNum_def split_def Let_def) } + moreover + { assume a: "a \ 0" and b: "b \ 0" + let ?g = "gcd a b" + from a b have g: "?g \ 0"by simp + from of_int_div[OF g, where ?'a = 'a] + have ?thesis by (auto simp add: x INum_def normNum_def split_def Let_def) } + ultimately show ?thesis by blast +qed + +lemma INum_normNum_iff: + "(INum x ::'a::{field_char_0, field_inverse_zero}) = INum y \ normNum x = normNum y" + (is "?lhs = ?rhs") +proof - + have "normNum x = normNum y \ (INum (normNum x) :: 'a) = INum (normNum y)" + by (simp del: normNum) + also have "\ = ?lhs" by simp + finally show ?thesis by simp +qed + +lemma Nadd[simp]: "INum (x +\<^sub>N y) = INum x + (INum y :: 'a :: {field_char_0, field_inverse_zero})" +proof - + let ?z = "0:: 'a" + obtain a b where x: "x = (a, b)" by (cases x) + obtain a' b' where y: "y = (a', b')" by (cases y) + { assume "a=0 \ a'= 0 \ b =0 \ b' = 0" + hence ?thesis + apply (cases "a=0", simp_all add: x y Nadd_def) + apply (cases "b= 0", simp_all add: INum_def) + apply (cases "a'= 0", simp_all) + apply (cases "b'= 0", simp_all) + done } + moreover + { assume aa': "a \ 0" "a'\ 0" and bb': "b \ 0" "b' \ 0" + { assume z: "a * b' + b * a' = 0" + hence "of_int (a*b' + b*a') / (of_int b* of_int b') = ?z" by simp + hence "of_int b' * of_int a / (of_int b * of_int b') + + of_int b * of_int a' / (of_int b * of_int b') = ?z" + by (simp add:add_divide_distrib) + hence th: "of_int a / of_int b + of_int a' / of_int b' = ?z" using bb' aa' + by simp + from z aa' bb' have ?thesis + by (simp add: x y th Nadd_def normNum_def INum_def split_def) } + moreover { + assume z: "a * b' + b * a' \ 0" + let ?g = "gcd (a * b' + b * a') (b*b')" + have gz: "?g \ 0" using z by simp + have ?thesis using aa' bb' z gz + of_int_div[where ?'a = 'a, OF gz gcd_dvd1_int[where x="a * b' + b * a'" and y="b*b'"]] + of_int_div[where ?'a = 'a, OF gz gcd_dvd2_int[where x="a * b' + b * a'" and y="b*b'"]] + by (simp add: x y Nadd_def INum_def normNum_def Let_def add_divide_distrib) } + ultimately have ?thesis using aa' bb' + by (simp add: x y Nadd_def INum_def normNum_def Let_def) } + ultimately show ?thesis by blast +qed + +lemma Nmul[simp]: "INum (x *\<^sub>N y) = INum x * (INum y:: 'a :: {field_char_0, field_inverse_zero})" +proof - + let ?z = "0::'a" + obtain a b where x: "x = (a, b)" by (cases x) + obtain a' b' where y: "y = (a', b')" by (cases y) + { assume "a=0 \ a'= 0 \ b = 0 \ b' = 0" + hence ?thesis + apply (cases "a=0", simp_all add: x y Nmul_def INum_def Let_def) + apply (cases "b=0", simp_all) + apply (cases "a'=0", simp_all) + done } + moreover + { assume z: "a \ 0" "a' \ 0" "b \ 0" "b' \ 0" + let ?g="gcd (a*a') (b*b')" + have gz: "?g \ 0" using z by simp + from z of_int_div[where ?'a = 'a, OF gz gcd_dvd1_int[where x="a*a'" and y="b*b'"]] + of_int_div[where ?'a = 'a , OF gz gcd_dvd2_int[where x="a*a'" and y="b*b'"]] + have ?thesis by (simp add: Nmul_def x y Let_def INum_def) } + ultimately show ?thesis by blast +qed + +lemma Nneg[simp]: "INum (~\<^sub>N x) = - (INum x ::'a:: field)" + by (simp add: Nneg_def split_def INum_def) + +lemma Nsub[simp]: "INum (x -\<^sub>N y) = INum x - (INum y:: 'a :: {field_char_0, field_inverse_zero})" + by (simp add: Nsub_def split_def) + +lemma Ninv[simp]: "INum (Ninv x) = (1::'a :: field_inverse_zero) / (INum x)" + by (simp add: Ninv_def INum_def split_def) + +lemma Ndiv[simp]: "INum (x \
\<^sub>N y) = INum x / (INum y ::'a :: {field_char_0, field_inverse_zero})" + by (simp add: Ndiv_def) + +lemma Nlt0_iff[simp]: + assumes nx: "isnormNum x" + shows "((INum x :: 'a :: {field_char_0, linordered_field_inverse_zero})< 0) = 0>\<^sub>N x" +proof - + obtain a b where x: "x = (a, b)" by (cases x) + { assume "a = 0" hence ?thesis by (simp add: x Nlt0_def INum_def) } + moreover + { assume a: "a \ 0" hence b: "(of_int b::'a) > 0" + using nx by (simp add: x isnormNum_def) + from pos_divide_less_eq[OF b, where b="of_int a" and a="0::'a"] + have ?thesis by (simp add: x Nlt0_def INum_def) } + ultimately show ?thesis by blast +qed + +lemma Nle0_iff[simp]: + assumes nx: "isnormNum x" + shows "((INum x :: 'a :: {field_char_0, linordered_field_inverse_zero}) \ 0) = 0\\<^sub>N x" +proof - + obtain a b where x: "x = (a, b)" by (cases x) + { assume "a = 0" hence ?thesis by (simp add: x Nle0_def INum_def) } + moreover + { assume a: "a \ 0" hence b: "(of_int b :: 'a) > 0" + using nx by (simp add: x isnormNum_def) + from pos_divide_le_eq[OF b, where b="of_int a" and a="0::'a"] + have ?thesis by (simp add: x Nle0_def INum_def) } + ultimately show ?thesis by blast +qed + +lemma Ngt0_iff[simp]: + assumes nx: "isnormNum x" + shows "((INum x :: 'a :: {field_char_0, linordered_field_inverse_zero})> 0) = 0<\<^sub>N x" +proof - + obtain a b where x: "x = (a, b)" by (cases x) + { assume "a = 0" hence ?thesis by (simp add: x Ngt0_def INum_def) } + moreover + { assume a: "a \ 0" hence b: "(of_int b::'a) > 0" using nx + by (simp add: x isnormNum_def) + from pos_less_divide_eq[OF b, where b="of_int a" and a="0::'a"] + have ?thesis by (simp add: x Ngt0_def INum_def) } + ultimately show ?thesis by blast +qed + +lemma Nge0_iff[simp]: + assumes nx: "isnormNum x" + shows "((INum x :: 'a :: {field_char_0, linordered_field_inverse_zero}) \ 0) = 0\\<^sub>N x" +proof - + obtain a b where x: "x = (a, b)" by (cases x) + { assume "a = 0" hence ?thesis by (simp add: x Nge0_def INum_def) } + moreover + { assume "a \ 0" hence b: "(of_int b::'a) > 0" using nx + by (simp add: x isnormNum_def) + from pos_le_divide_eq[OF b, where b="of_int a" and a="0::'a"] + have ?thesis by (simp add: x Nge0_def INum_def) } + ultimately show ?thesis by blast +qed + +lemma Nlt_iff[simp]: + assumes nx: "isnormNum x" and ny: "isnormNum y" + shows "((INum x :: 'a :: {field_char_0, linordered_field_inverse_zero}) < INum y) = (x <\<^sub>N y)" +proof - + let ?z = "0::'a" + have "((INum x ::'a) < INum y) = (INum (x -\<^sub>N y) < ?z)" + using nx ny by simp + also have "\ = (0>\<^sub>N (x -\<^sub>N y))" + using Nlt0_iff[OF Nsub_normN[OF ny]] by simp + finally show ?thesis by (simp add: Nlt_def) +qed + +lemma Nle_iff[simp]: + assumes nx: "isnormNum x" and ny: "isnormNum y" + shows "((INum x :: 'a :: {field_char_0, linordered_field_inverse_zero})\ INum y) = (x \\<^sub>N y)" +proof - + have "((INum x ::'a) \ INum y) = (INum (x -\<^sub>N y) \ (0::'a))" + using nx ny by simp + also have "\ = (0\\<^sub>N (x -\<^sub>N y))" + using Nle0_iff[OF Nsub_normN[OF ny]] by simp + finally show ?thesis by (simp add: Nle_def) +qed + +lemma Nadd_commute: + assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})" + shows "x +\<^sub>N y = y +\<^sub>N x" +proof - + have n: "isnormNum (x +\<^sub>N y)" "isnormNum (y +\<^sub>N x)" by simp_all + have "(INum (x +\<^sub>N y)::'a) = INum (y +\<^sub>N x)" by simp + with isnormNum_unique[OF n] show ?thesis by simp +qed + +lemma [simp]: + assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})" + shows "(0, b) +\<^sub>N y = normNum y" + and "(a, 0) +\<^sub>N y = normNum y" + and "x +\<^sub>N (0, b) = normNum x" + and "x +\<^sub>N (a, 0) = normNum x" + apply (simp add: Nadd_def split_def) + apply (simp add: Nadd_def split_def) + apply (subst Nadd_commute, simp add: Nadd_def split_def) + apply (subst Nadd_commute, simp add: Nadd_def split_def) + done + +lemma normNum_nilpotent_aux[simp]: + assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})" + assumes nx: "isnormNum x" + shows "normNum x = x" +proof - + let ?a = "normNum x" + have n: "isnormNum ?a" by simp + have th: "INum ?a = (INum x ::'a)" by simp + with isnormNum_unique[OF n nx] show ?thesis by simp +qed + +lemma normNum_nilpotent[simp]: + assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})" + shows "normNum (normNum x) = normNum x" + by simp + +lemma normNum0[simp]: "normNum (0,b) = 0\<^sub>N" "normNum (a,0) = 0\<^sub>N" + by (simp_all add: normNum_def) + +lemma normNum_Nadd: + assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})" + shows "normNum (x +\<^sub>N y) = x +\<^sub>N y" by simp + +lemma Nadd_normNum1[simp]: + assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})" + shows "normNum x +\<^sub>N y = x +\<^sub>N y" +proof - + have n: "isnormNum (normNum x +\<^sub>N y)" "isnormNum (x +\<^sub>N y)" by simp_all + have "INum (normNum x +\<^sub>N y) = INum x + (INum y :: 'a)" by simp + also have "\ = INum (x +\<^sub>N y)" by simp + finally show ?thesis using isnormNum_unique[OF n] by simp +qed + +lemma Nadd_normNum2[simp]: + assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})" + shows "x +\<^sub>N normNum y = x +\<^sub>N y" +proof - + have n: "isnormNum (x +\<^sub>N normNum y)" "isnormNum (x +\<^sub>N y)" by simp_all + have "INum (x +\<^sub>N normNum y) = INum x + (INum y :: 'a)" by simp + also have "\ = INum (x +\<^sub>N y)" by simp + finally show ?thesis using isnormNum_unique[OF n] by simp +qed + +lemma Nadd_assoc: + assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})" + shows "x +\<^sub>N y +\<^sub>N z = x +\<^sub>N (y +\<^sub>N z)" +proof - + have n: "isnormNum (x +\<^sub>N y +\<^sub>N z)" "isnormNum (x +\<^sub>N (y +\<^sub>N z))" by simp_all + have "INum (x +\<^sub>N y +\<^sub>N z) = (INum (x +\<^sub>N (y +\<^sub>N z)) :: 'a)" by simp + with isnormNum_unique[OF n] show ?thesis by simp +qed + +lemma Nmul_commute: "isnormNum x \ isnormNum y \ x *\<^sub>N y = y *\<^sub>N x" + by (simp add: Nmul_def split_def Let_def gcd_commute_int mult_commute) + +lemma Nmul_assoc: + assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})" + assumes nx: "isnormNum x" and ny: "isnormNum y" and nz: "isnormNum z" + shows "x *\<^sub>N y *\<^sub>N z = x *\<^sub>N (y *\<^sub>N z)" +proof - + from nx ny nz have n: "isnormNum (x *\<^sub>N y *\<^sub>N z)" "isnormNum (x *\<^sub>N (y *\<^sub>N z))" + by simp_all + have "INum (x +\<^sub>N y +\<^sub>N z) = (INum (x +\<^sub>N (y +\<^sub>N z)) :: 'a)" by simp + with isnormNum_unique[OF n] show ?thesis by simp +qed + +lemma Nsub0: + assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})" + assumes x: "isnormNum x" and y: "isnormNum y" + shows "x -\<^sub>N y = 0\<^sub>N \ x = y" +proof - + fix h :: 'a + from isnormNum_unique[where 'a = 'a, OF Nsub_normN[OF y], where y="0\<^sub>N"] + have "(x -\<^sub>N y = 0\<^sub>N) = (INum (x -\<^sub>N y) = (INum 0\<^sub>N :: 'a)) " by simp + also have "\ = (INum x = (INum y :: 'a))" by simp + also have "\ = (x = y)" using x y by simp + finally show ?thesis . +qed + +lemma Nmul0[simp]: "c *\<^sub>N 0\<^sub>N = 0\<^sub>N" " 0\<^sub>N *\<^sub>N c = 0\<^sub>N" + by (simp_all add: Nmul_def Let_def split_def) + +lemma Nmul_eq0[simp]: + assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})" + assumes nx: "isnormNum x" and ny: "isnormNum y" + shows "x*\<^sub>N y = 0\<^sub>N \ x = 0\<^sub>N \ y = 0\<^sub>N" +proof - + fix h :: 'a + obtain a b where x: "x = (a, b)" by (cases x) + obtain a' b' where y: "y = (a', b')" by (cases y) + have n0: "isnormNum 0\<^sub>N" by simp + show ?thesis using nx ny + apply (simp only: isnormNum_unique[where ?'a = 'a, OF Nmul_normN[OF nx ny] n0, symmetric] + Nmul[where ?'a = 'a]) + apply (simp add: x y INum_def split_def isnormNum_def split: split_if_asm) + done +qed + +lemma Nneg_Nneg[simp]: "~\<^sub>N (~\<^sub>N c) = c" + by (simp add: Nneg_def split_def) + +lemma Nmul1[simp]: + "isnormNum c \ (1)\<^sub>N *\<^sub>N c = c" + "isnormNum c \ c *\<^sub>N (1)\<^sub>N = c" + apply (simp_all add: Nmul_def Let_def split_def isnormNum_def) + apply (cases "fst c = 0", simp_all, cases c, simp_all)+ + done + +end diff -r 63fe59f64578 -r 0e6645622f22 src/HOL/Decision_Procs/Reflected_Multivariate_Polynomial.thy --- a/src/HOL/Decision_Procs/Reflected_Multivariate_Polynomial.thy Thu Oct 31 11:44:20 2013 +0100 +++ b/src/HOL/Decision_Procs/Reflected_Multivariate_Polynomial.thy Thu Oct 31 11:44:20 2013 +0100 @@ -5,7 +5,7 @@ header {* Implementation and verification of multivariate polynomials *} theory Reflected_Multivariate_Polynomial -imports Complex_Main "~~/src/HOL/Library/Abstract_Rat" Polynomial_List +imports Complex_Main Rat_Pair Polynomial_List begin subsection{* Datatype of polynomial expressions *} diff -r 63fe59f64578 -r 0e6645622f22 src/HOL/Library/Abstract_Rat.thy --- a/src/HOL/Library/Abstract_Rat.thy Thu Oct 31 11:44:20 2013 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,521 +0,0 @@ -(* Title: HOL/Library/Abstract_Rat.thy - Author: Amine Chaieb -*) - -header {* Abstract rational numbers *} - -theory Abstract_Rat -imports Complex_Main -begin - -type_synonym Num = "int \ int" - -abbreviation Num0_syn :: Num ("0\<^sub>N") - where "0\<^sub>N \ (0, 0)" - -abbreviation Numi_syn :: "int \ Num" ("'((_)')\<^sub>N") - where "(i)\<^sub>N \ (i, 1)" - -definition isnormNum :: "Num \ bool" where - "isnormNum = (\(a,b). (if a = 0 then b = 0 else b > 0 \ gcd a b = 1))" - -definition normNum :: "Num \ Num" where - "normNum = (\(a,b). - (if a=0 \ b = 0 then (0,0) else - (let g = gcd a b - in if b > 0 then (a div g, b div g) else (- (a div g), - (b div g)))))" - -declare gcd_dvd1_int[presburger] gcd_dvd2_int[presburger] - -lemma normNum_isnormNum [simp]: "isnormNum (normNum x)" -proof - - obtain a b where x: "x = (a, b)" by (cases x) - { assume "a=0 \ b = 0" hence ?thesis by (simp add: x normNum_def isnormNum_def) } - moreover - { assume anz: "a \ 0" and bnz: "b \ 0" - let ?g = "gcd a b" - let ?a' = "a div ?g" - let ?b' = "b div ?g" - let ?g' = "gcd ?a' ?b'" - from anz bnz have "?g \ 0" by simp with gcd_ge_0_int[of a b] - have gpos: "?g > 0" by arith - have gdvd: "?g dvd a" "?g dvd b" by arith+ - from dvd_mult_div_cancel[OF gdvd(1)] dvd_mult_div_cancel[OF gdvd(2)] anz bnz - have nz': "?a' \ 0" "?b' \ 0" by - (rule notI, simp)+ - from anz bnz have stupid: "a \ 0 \ b \ 0" by arith - from div_gcd_coprime_int[OF stupid] have gp1: "?g' = 1" . - from bnz have "b < 0 \ b > 0" by arith - moreover - { assume b: "b > 0" - from b have "?b' \ 0" - by (presburger add: pos_imp_zdiv_nonneg_iff[OF gpos]) - with nz' have b': "?b' > 0" by arith - from b b' anz bnz nz' gp1 have ?thesis - by (simp add: x isnormNum_def normNum_def Let_def split_def) } - moreover { - assume b: "b < 0" - { assume b': "?b' \ 0" - from gpos have th: "?g \ 0" by arith - from mult_nonneg_nonneg[OF th b'] dvd_mult_div_cancel[OF gdvd(2)] - have False using b by arith } - hence b': "?b' < 0" by (presburger add: linorder_not_le[symmetric]) - from anz bnz nz' b b' gp1 have ?thesis - by (simp add: x isnormNum_def normNum_def Let_def split_def) } - ultimately have ?thesis by blast - } - ultimately show ?thesis by blast -qed - -text {* Arithmetic over Num *} - -definition Nadd :: "Num \ Num \ Num" (infixl "+\<^sub>N" 60) where - "Nadd = (\(a,b) (a',b'). if a = 0 \ b = 0 then normNum(a',b') - else if a'=0 \ b' = 0 then normNum(a,b) - else normNum(a*b' + b*a', b*b'))" - -definition Nmul :: "Num \ Num \ Num" (infixl "*\<^sub>N" 60) where - "Nmul = (\(a,b) (a',b'). let g = gcd (a*a') (b*b') - in (a*a' div g, b*b' div g))" - -definition Nneg :: "Num \ Num" ("~\<^sub>N") - where "Nneg \ (\(a,b). (-a,b))" - -definition Nsub :: "Num \ Num \ Num" (infixl "-\<^sub>N" 60) - where "Nsub = (\a b. a +\<^sub>N ~\<^sub>N b)" - -definition Ninv :: "Num \ Num" - where "Ninv = (\(a,b). if a < 0 then (-b, \a\) else (b,a))" - -definition Ndiv :: "Num \ Num \ Num" (infixl "\
\<^sub>N" 60) - where "Ndiv = (\a b. a *\<^sub>N Ninv b)" - -lemma Nneg_normN[simp]: "isnormNum x \ isnormNum (~\<^sub>N x)" - by (simp add: isnormNum_def Nneg_def split_def) - -lemma Nadd_normN[simp]: "isnormNum (x +\<^sub>N y)" - by (simp add: Nadd_def split_def) - -lemma Nsub_normN[simp]: "\ isnormNum y\ \ isnormNum (x -\<^sub>N y)" - by (simp add: Nsub_def split_def) - -lemma Nmul_normN[simp]: - assumes xn: "isnormNum x" and yn: "isnormNum y" - shows "isnormNum (x *\<^sub>N y)" -proof - - obtain a b where x: "x = (a, b)" by (cases x) - obtain a' b' where y: "y = (a', b')" by (cases y) - { assume "a = 0" - hence ?thesis using xn x y - by (simp add: isnormNum_def Let_def Nmul_def split_def) } - moreover - { assume "a' = 0" - hence ?thesis using yn x y - by (simp add: isnormNum_def Let_def Nmul_def split_def) } - moreover - { assume a: "a \0" and a': "a'\0" - hence bp: "b > 0" "b' > 0" using xn yn x y by (simp_all add: isnormNum_def) - from mult_pos_pos[OF bp] have "x *\<^sub>N y = normNum (a * a', b * b')" - using x y a a' bp by (simp add: Nmul_def Let_def split_def normNum_def) - hence ?thesis by simp } - ultimately show ?thesis by blast -qed - -lemma Ninv_normN[simp]: "isnormNum x \ isnormNum (Ninv x)" - by (simp add: Ninv_def isnormNum_def split_def) - (cases "fst x = 0", auto simp add: gcd_commute_int) - -lemma isnormNum_int[simp]: - "isnormNum 0\<^sub>N" "isnormNum ((1::int)\<^sub>N)" "i \ 0 \ isnormNum (i)\<^sub>N" - by (simp_all add: isnormNum_def) - - -text {* Relations over Num *} - -definition Nlt0:: "Num \ bool" ("0>\<^sub>N") - where "Nlt0 = (\(a,b). a < 0)" - -definition Nle0:: "Num \ bool" ("0\\<^sub>N") - where "Nle0 = (\(a,b). a \ 0)" - -definition Ngt0:: "Num \ bool" ("0<\<^sub>N") - where "Ngt0 = (\(a,b). a > 0)" - -definition Nge0:: "Num \ bool" ("0\\<^sub>N") - where "Nge0 = (\(a,b). a \ 0)" - -definition Nlt :: "Num \ Num \ bool" (infix "<\<^sub>N" 55) - where "Nlt = (\a b. 0>\<^sub>N (a -\<^sub>N b))" - -definition Nle :: "Num \ Num \ bool" (infix "\\<^sub>N" 55) - where "Nle = (\a b. 0\\<^sub>N (a -\<^sub>N b))" - -definition "INum = (\(a,b). of_int a / of_int b)" - -lemma INum_int [simp]: "INum (i)\<^sub>N = ((of_int i) ::'a::field)" "INum 0\<^sub>N = (0::'a::field)" - by (simp_all add: INum_def) - -lemma isnormNum_unique[simp]: - assumes na: "isnormNum x" and nb: "isnormNum y" - shows "((INum x ::'a::{field_char_0, field_inverse_zero}) = INum y) = (x = y)" (is "?lhs = ?rhs") -proof - obtain a b where x: "x = (a, b)" by (cases x) - obtain a' b' where y: "y = (a', b')" by (cases y) - assume H: ?lhs - { assume "a = 0 \ b = 0 \ a' = 0 \ b' = 0" - hence ?rhs using na nb H - by (simp add: x y INum_def split_def isnormNum_def split: split_if_asm) } - moreover - { assume az: "a \ 0" and bz: "b \ 0" and a'z: "a'\0" and b'z: "b'\0" - from az bz a'z b'z na nb have pos: "b > 0" "b' > 0" by (simp_all add: x y isnormNum_def) - from H bz b'z have eq: "a * b' = a'*b" - by (simp add: x y INum_def eq_divide_eq divide_eq_eq of_int_mult[symmetric] del: of_int_mult) - from az a'z na nb have gcd1: "gcd a b = 1" "gcd b a = 1" "gcd a' b' = 1" "gcd b' a' = 1" - by (simp_all add: x y isnormNum_def add: gcd_commute_int) - from eq have raw_dvd: "a dvd a' * b" "b dvd b' * a" "a' dvd a * b'" "b' dvd b * a'" - apply - - apply algebra - apply algebra - apply simp - apply algebra - done - from zdvd_antisym_abs[OF coprime_dvd_mult_int[OF gcd1(2) raw_dvd(2)] - coprime_dvd_mult_int[OF gcd1(4) raw_dvd(4)]] - have eq1: "b = b'" using pos by arith - with eq have "a = a'" using pos by simp - with eq1 have ?rhs by (simp add: x y) } - ultimately show ?rhs by blast -next - assume ?rhs thus ?lhs by simp -qed - - -lemma isnormNum0[simp]: - "isnormNum x \ (INum x = (0::'a::{field_char_0, field_inverse_zero})) = (x = 0\<^sub>N)" - unfolding INum_int(2)[symmetric] - by (rule isnormNum_unique) simp_all - -lemma of_int_div_aux: "d ~= 0 ==> ((of_int x)::'a::field_char_0) / (of_int d) = - of_int (x div d) + (of_int (x mod d)) / ((of_int d)::'a)" -proof - - assume "d ~= 0" - let ?t = "of_int (x div d) * ((of_int d)::'a) + of_int(x mod d)" - let ?f = "\x. x / of_int d" - have "x = (x div d) * d + x mod d" - by auto - then have eq: "of_int x = ?t" - by (simp only: of_int_mult[symmetric] of_int_add [symmetric]) - then have "of_int x / of_int d = ?t / of_int d" - using cong[OF refl[of ?f] eq] by simp - then show ?thesis by (simp add: add_divide_distrib algebra_simps `d ~= 0`) -qed - -lemma of_int_div: "(d::int) ~= 0 ==> d dvd n ==> - (of_int(n div d)::'a::field_char_0) = of_int n / of_int d" - apply (frule of_int_div_aux [of d n, where ?'a = 'a]) - apply simp - apply (simp add: dvd_eq_mod_eq_0) - done - - -lemma normNum[simp]: "INum (normNum x) = (INum x :: 'a::{field_char_0, field_inverse_zero})" -proof - - obtain a b where x: "x = (a, b)" by (cases x) - { assume "a = 0 \ b = 0" - hence ?thesis by (simp add: x INum_def normNum_def split_def Let_def) } - moreover - { assume a: "a \ 0" and b: "b \ 0" - let ?g = "gcd a b" - from a b have g: "?g \ 0"by simp - from of_int_div[OF g, where ?'a = 'a] - have ?thesis by (auto simp add: x INum_def normNum_def split_def Let_def) } - ultimately show ?thesis by blast -qed - -lemma INum_normNum_iff: - "(INum x ::'a::{field_char_0, field_inverse_zero}) = INum y \ normNum x = normNum y" - (is "?lhs = ?rhs") -proof - - have "normNum x = normNum y \ (INum (normNum x) :: 'a) = INum (normNum y)" - by (simp del: normNum) - also have "\ = ?lhs" by simp - finally show ?thesis by simp -qed - -lemma Nadd[simp]: "INum (x +\<^sub>N y) = INum x + (INum y :: 'a :: {field_char_0, field_inverse_zero})" -proof - - let ?z = "0:: 'a" - obtain a b where x: "x = (a, b)" by (cases x) - obtain a' b' where y: "y = (a', b')" by (cases y) - { assume "a=0 \ a'= 0 \ b =0 \ b' = 0" - hence ?thesis - apply (cases "a=0", simp_all add: x y Nadd_def) - apply (cases "b= 0", simp_all add: INum_def) - apply (cases "a'= 0", simp_all) - apply (cases "b'= 0", simp_all) - done } - moreover - { assume aa': "a \ 0" "a'\ 0" and bb': "b \ 0" "b' \ 0" - { assume z: "a * b' + b * a' = 0" - hence "of_int (a*b' + b*a') / (of_int b* of_int b') = ?z" by simp - hence "of_int b' * of_int a / (of_int b * of_int b') + - of_int b * of_int a' / (of_int b * of_int b') = ?z" - by (simp add:add_divide_distrib) - hence th: "of_int a / of_int b + of_int a' / of_int b' = ?z" using bb' aa' - by simp - from z aa' bb' have ?thesis - by (simp add: x y th Nadd_def normNum_def INum_def split_def) } - moreover { - assume z: "a * b' + b * a' \ 0" - let ?g = "gcd (a * b' + b * a') (b*b')" - have gz: "?g \ 0" using z by simp - have ?thesis using aa' bb' z gz - of_int_div[where ?'a = 'a, OF gz gcd_dvd1_int[where x="a * b' + b * a'" and y="b*b'"]] - of_int_div[where ?'a = 'a, OF gz gcd_dvd2_int[where x="a * b' + b * a'" and y="b*b'"]] - by (simp add: x y Nadd_def INum_def normNum_def Let_def add_divide_distrib) } - ultimately have ?thesis using aa' bb' - by (simp add: x y Nadd_def INum_def normNum_def Let_def) } - ultimately show ?thesis by blast -qed - -lemma Nmul[simp]: "INum (x *\<^sub>N y) = INum x * (INum y:: 'a :: {field_char_0, field_inverse_zero})" -proof - - let ?z = "0::'a" - obtain a b where x: "x = (a, b)" by (cases x) - obtain a' b' where y: "y = (a', b')" by (cases y) - { assume "a=0 \ a'= 0 \ b = 0 \ b' = 0" - hence ?thesis - apply (cases "a=0", simp_all add: x y Nmul_def INum_def Let_def) - apply (cases "b=0", simp_all) - apply (cases "a'=0", simp_all) - done } - moreover - { assume z: "a \ 0" "a' \ 0" "b \ 0" "b' \ 0" - let ?g="gcd (a*a') (b*b')" - have gz: "?g \ 0" using z by simp - from z of_int_div[where ?'a = 'a, OF gz gcd_dvd1_int[where x="a*a'" and y="b*b'"]] - of_int_div[where ?'a = 'a , OF gz gcd_dvd2_int[where x="a*a'" and y="b*b'"]] - have ?thesis by (simp add: Nmul_def x y Let_def INum_def) } - ultimately show ?thesis by blast -qed - -lemma Nneg[simp]: "INum (~\<^sub>N x) = - (INum x ::'a:: field)" - by (simp add: Nneg_def split_def INum_def) - -lemma Nsub[simp]: "INum (x -\<^sub>N y) = INum x - (INum y:: 'a :: {field_char_0, field_inverse_zero})" - by (simp add: Nsub_def split_def) - -lemma Ninv[simp]: "INum (Ninv x) = (1::'a :: field_inverse_zero) / (INum x)" - by (simp add: Ninv_def INum_def split_def) - -lemma Ndiv[simp]: "INum (x \
\<^sub>N y) = INum x / (INum y ::'a :: {field_char_0, field_inverse_zero})" - by (simp add: Ndiv_def) - -lemma Nlt0_iff[simp]: - assumes nx: "isnormNum x" - shows "((INum x :: 'a :: {field_char_0, linordered_field_inverse_zero})< 0) = 0>\<^sub>N x" -proof - - obtain a b where x: "x = (a, b)" by (cases x) - { assume "a = 0" hence ?thesis by (simp add: x Nlt0_def INum_def) } - moreover - { assume a: "a \ 0" hence b: "(of_int b::'a) > 0" - using nx by (simp add: x isnormNum_def) - from pos_divide_less_eq[OF b, where b="of_int a" and a="0::'a"] - have ?thesis by (simp add: x Nlt0_def INum_def) } - ultimately show ?thesis by blast -qed - -lemma Nle0_iff[simp]: - assumes nx: "isnormNum x" - shows "((INum x :: 'a :: {field_char_0, linordered_field_inverse_zero}) \ 0) = 0\\<^sub>N x" -proof - - obtain a b where x: "x = (a, b)" by (cases x) - { assume "a = 0" hence ?thesis by (simp add: x Nle0_def INum_def) } - moreover - { assume a: "a \ 0" hence b: "(of_int b :: 'a) > 0" - using nx by (simp add: x isnormNum_def) - from pos_divide_le_eq[OF b, where b="of_int a" and a="0::'a"] - have ?thesis by (simp add: x Nle0_def INum_def) } - ultimately show ?thesis by blast -qed - -lemma Ngt0_iff[simp]: - assumes nx: "isnormNum x" - shows "((INum x :: 'a :: {field_char_0, linordered_field_inverse_zero})> 0) = 0<\<^sub>N x" -proof - - obtain a b where x: "x = (a, b)" by (cases x) - { assume "a = 0" hence ?thesis by (simp add: x Ngt0_def INum_def) } - moreover - { assume a: "a \ 0" hence b: "(of_int b::'a) > 0" using nx - by (simp add: x isnormNum_def) - from pos_less_divide_eq[OF b, where b="of_int a" and a="0::'a"] - have ?thesis by (simp add: x Ngt0_def INum_def) } - ultimately show ?thesis by blast -qed - -lemma Nge0_iff[simp]: - assumes nx: "isnormNum x" - shows "((INum x :: 'a :: {field_char_0, linordered_field_inverse_zero}) \ 0) = 0\\<^sub>N x" -proof - - obtain a b where x: "x = (a, b)" by (cases x) - { assume "a = 0" hence ?thesis by (simp add: x Nge0_def INum_def) } - moreover - { assume "a \ 0" hence b: "(of_int b::'a) > 0" using nx - by (simp add: x isnormNum_def) - from pos_le_divide_eq[OF b, where b="of_int a" and a="0::'a"] - have ?thesis by (simp add: x Nge0_def INum_def) } - ultimately show ?thesis by blast -qed - -lemma Nlt_iff[simp]: - assumes nx: "isnormNum x" and ny: "isnormNum y" - shows "((INum x :: 'a :: {field_char_0, linordered_field_inverse_zero}) < INum y) = (x <\<^sub>N y)" -proof - - let ?z = "0::'a" - have "((INum x ::'a) < INum y) = (INum (x -\<^sub>N y) < ?z)" - using nx ny by simp - also have "\ = (0>\<^sub>N (x -\<^sub>N y))" - using Nlt0_iff[OF Nsub_normN[OF ny]] by simp - finally show ?thesis by (simp add: Nlt_def) -qed - -lemma Nle_iff[simp]: - assumes nx: "isnormNum x" and ny: "isnormNum y" - shows "((INum x :: 'a :: {field_char_0, linordered_field_inverse_zero})\ INum y) = (x \\<^sub>N y)" -proof - - have "((INum x ::'a) \ INum y) = (INum (x -\<^sub>N y) \ (0::'a))" - using nx ny by simp - also have "\ = (0\\<^sub>N (x -\<^sub>N y))" - using Nle0_iff[OF Nsub_normN[OF ny]] by simp - finally show ?thesis by (simp add: Nle_def) -qed - -lemma Nadd_commute: - assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})" - shows "x +\<^sub>N y = y +\<^sub>N x" -proof - - have n: "isnormNum (x +\<^sub>N y)" "isnormNum (y +\<^sub>N x)" by simp_all - have "(INum (x +\<^sub>N y)::'a) = INum (y +\<^sub>N x)" by simp - with isnormNum_unique[OF n] show ?thesis by simp -qed - -lemma [simp]: - assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})" - shows "(0, b) +\<^sub>N y = normNum y" - and "(a, 0) +\<^sub>N y = normNum y" - and "x +\<^sub>N (0, b) = normNum x" - and "x +\<^sub>N (a, 0) = normNum x" - apply (simp add: Nadd_def split_def) - apply (simp add: Nadd_def split_def) - apply (subst Nadd_commute, simp add: Nadd_def split_def) - apply (subst Nadd_commute, simp add: Nadd_def split_def) - done - -lemma normNum_nilpotent_aux[simp]: - assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})" - assumes nx: "isnormNum x" - shows "normNum x = x" -proof - - let ?a = "normNum x" - have n: "isnormNum ?a" by simp - have th: "INum ?a = (INum x ::'a)" by simp - with isnormNum_unique[OF n nx] show ?thesis by simp -qed - -lemma normNum_nilpotent[simp]: - assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})" - shows "normNum (normNum x) = normNum x" - by simp - -lemma normNum0[simp]: "normNum (0,b) = 0\<^sub>N" "normNum (a,0) = 0\<^sub>N" - by (simp_all add: normNum_def) - -lemma normNum_Nadd: - assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})" - shows "normNum (x +\<^sub>N y) = x +\<^sub>N y" by simp - -lemma Nadd_normNum1[simp]: - assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})" - shows "normNum x +\<^sub>N y = x +\<^sub>N y" -proof - - have n: "isnormNum (normNum x +\<^sub>N y)" "isnormNum (x +\<^sub>N y)" by simp_all - have "INum (normNum x +\<^sub>N y) = INum x + (INum y :: 'a)" by simp - also have "\ = INum (x +\<^sub>N y)" by simp - finally show ?thesis using isnormNum_unique[OF n] by simp -qed - -lemma Nadd_normNum2[simp]: - assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})" - shows "x +\<^sub>N normNum y = x +\<^sub>N y" -proof - - have n: "isnormNum (x +\<^sub>N normNum y)" "isnormNum (x +\<^sub>N y)" by simp_all - have "INum (x +\<^sub>N normNum y) = INum x + (INum y :: 'a)" by simp - also have "\ = INum (x +\<^sub>N y)" by simp - finally show ?thesis using isnormNum_unique[OF n] by simp -qed - -lemma Nadd_assoc: - assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})" - shows "x +\<^sub>N y +\<^sub>N z = x +\<^sub>N (y +\<^sub>N z)" -proof - - have n: "isnormNum (x +\<^sub>N y +\<^sub>N z)" "isnormNum (x +\<^sub>N (y +\<^sub>N z))" by simp_all - have "INum (x +\<^sub>N y +\<^sub>N z) = (INum (x +\<^sub>N (y +\<^sub>N z)) :: 'a)" by simp - with isnormNum_unique[OF n] show ?thesis by simp -qed - -lemma Nmul_commute: "isnormNum x \ isnormNum y \ x *\<^sub>N y = y *\<^sub>N x" - by (simp add: Nmul_def split_def Let_def gcd_commute_int mult_commute) - -lemma Nmul_assoc: - assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})" - assumes nx: "isnormNum x" and ny: "isnormNum y" and nz: "isnormNum z" - shows "x *\<^sub>N y *\<^sub>N z = x *\<^sub>N (y *\<^sub>N z)" -proof - - from nx ny nz have n: "isnormNum (x *\<^sub>N y *\<^sub>N z)" "isnormNum (x *\<^sub>N (y *\<^sub>N z))" - by simp_all - have "INum (x +\<^sub>N y +\<^sub>N z) = (INum (x +\<^sub>N (y +\<^sub>N z)) :: 'a)" by simp - with isnormNum_unique[OF n] show ?thesis by simp -qed - -lemma Nsub0: - assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})" - assumes x: "isnormNum x" and y: "isnormNum y" - shows "x -\<^sub>N y = 0\<^sub>N \ x = y" -proof - - fix h :: 'a - from isnormNum_unique[where 'a = 'a, OF Nsub_normN[OF y], where y="0\<^sub>N"] - have "(x -\<^sub>N y = 0\<^sub>N) = (INum (x -\<^sub>N y) = (INum 0\<^sub>N :: 'a)) " by simp - also have "\ = (INum x = (INum y :: 'a))" by simp - also have "\ = (x = y)" using x y by simp - finally show ?thesis . -qed - -lemma Nmul0[simp]: "c *\<^sub>N 0\<^sub>N = 0\<^sub>N" " 0\<^sub>N *\<^sub>N c = 0\<^sub>N" - by (simp_all add: Nmul_def Let_def split_def) - -lemma Nmul_eq0[simp]: - assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})" - assumes nx: "isnormNum x" and ny: "isnormNum y" - shows "x*\<^sub>N y = 0\<^sub>N \ x = 0\<^sub>N \ y = 0\<^sub>N" -proof - - fix h :: 'a - obtain a b where x: "x = (a, b)" by (cases x) - obtain a' b' where y: "y = (a', b')" by (cases y) - have n0: "isnormNum 0\<^sub>N" by simp - show ?thesis using nx ny - apply (simp only: isnormNum_unique[where ?'a = 'a, OF Nmul_normN[OF nx ny] n0, symmetric] - Nmul[where ?'a = 'a]) - apply (simp add: x y INum_def split_def isnormNum_def split: split_if_asm) - done -qed - -lemma Nneg_Nneg[simp]: "~\<^sub>N (~\<^sub>N c) = c" - by (simp add: Nneg_def split_def) - -lemma Nmul1[simp]: - "isnormNum c \ (1)\<^sub>N *\<^sub>N c = c" - "isnormNum c \ c *\<^sub>N (1)\<^sub>N = c" - apply (simp_all add: Nmul_def Let_def split_def isnormNum_def) - apply (cases "fst c = 0", simp_all, cases c, simp_all)+ - done - -end diff -r 63fe59f64578 -r 0e6645622f22 src/HOL/Library/Library.thy --- a/src/HOL/Library/Library.thy Thu Oct 31 11:44:20 2013 +0100 +++ b/src/HOL/Library/Library.thy Thu Oct 31 11:44:20 2013 +0100 @@ -1,7 +1,6 @@ (*<*) theory Library imports - Abstract_Rat AList BigO Binomial