# HG changeset patch # User hoelzl # Date 1283415272 -7200 # Node ID 1030b1a166efb0380630fd1afab8e37e5c4c8671 # Parent caad9d509bc4036826b20739e660922cb93ae814 Add lessThan_Suc_eq_insert_0 diff -r caad9d509bc4 -r 1030b1a166ef src/HOL/SetInterval.thy --- a/src/HOL/SetInterval.thy Thu Sep 02 09:13:28 2010 +0200 +++ b/src/HOL/SetInterval.thy Thu Sep 02 10:14:32 2010 +0200 @@ -304,6 +304,17 @@ lemma lessThan_Suc: "lessThan (Suc k) = insert k (lessThan k)" by (simp add: lessThan_def less_Suc_eq, blast) +text {* The following proof is convinient in induction proofs where +new elements get indices at the beginning. So it is used to transform +@{term "{.. Suc ` {.. Suc (x - 1)" by auto + with `x < Suc n` show "x = 0" by auto +qed + lemma lessThan_Suc_atMost: "lessThan (Suc k) = atMost k" by (simp add: lessThan_def atMost_def less_Suc_eq_le)