# HG changeset patch # User nipkow # Date 1410885753 -7200 # Node ID 107341a1594677701d4015cdd86a35028e92b17c # Parent 2d47c7d10b62e585f6b673b1f0c1d2a220c403eb added lemma diff -r 2d47c7d10b62 -r 107341a15946 src/HOL/Groups_Big.thy --- a/src/HOL/Groups_Big.thy Tue Sep 16 16:04:08 2014 +0200 +++ b/src/HOL/Groups_Big.thy Tue Sep 16 18:42:33 2014 +0200 @@ -948,6 +948,9 @@ apply (auto simp add: algebra_simps) done +lemma setsum_Suc: "setsum (%x. Suc(f x)) A = setsum f A + card A" +using setsum.distrib[of f "%_. 1" A] by(simp) + lemma setsum_bounded: assumes le: "\i. i\A \ f i \ (K::'a::{semiring_1, ordered_ab_semigroup_add})" shows "setsum f A \ of_nat (card A) * K"