# HG changeset patch # User paulson # Date 889610623 -3600 # Node ID 10af4886b33fab89d5e727d66a7789725847467d # Parent 0196377b57036b0625230e8b8217fc390e6f1a42 Arith.thy -> thy; proved a few new theorems diff -r 0196377b5703 -r 10af4886b33f src/HOL/Arith.ML --- a/src/HOL/Arith.ML Wed Mar 11 10:17:16 1998 +0100 +++ b/src/HOL/Arith.ML Wed Mar 11 11:03:43 1998 +0100 @@ -12,13 +12,13 @@ (** Difference **) -qed_goal "diff_0_eq_0" Arith.thy +qed_goal "diff_0_eq_0" thy "0 - n = 0" (fn _ => [induct_tac "n" 1, ALLGOALS Asm_simp_tac]); (*Must simplify BEFORE the induction!! (Else we get a critical pair) Suc(m) - Suc(n) rewrites to pred(Suc(m) - n) *) -qed_goal "diff_Suc_Suc" Arith.thy +qed_goal "diff_Suc_Suc" thy "Suc(m) - Suc(n) = m - n" (fn _ => [Simp_tac 1, induct_tac "n" 1, ALLGOALS Asm_simp_tac]); @@ -28,17 +28,11 @@ (* Could be (and is, below) generalized in various ways; However, none of the generalizations are currently in the simpset, and I dread to think what happens if I put them in *) -goal Arith.thy "!!n. 0 < n ==> Suc(n-1) = n"; +goal thy "!!n. 0 < n ==> Suc(n-1) = n"; by (asm_simp_tac (simpset() addsplits [expand_nat_case]) 1); qed "Suc_pred"; Addsimps [Suc_pred]; -(* Generalize? *) -goal Arith.thy "!!n. 0 n-1 < n"; -by (asm_simp_tac (simpset() addsplits [expand_nat_case]) 1); -qed "pred_less"; -Addsimps [pred_less]; - Delsimps [diff_Suc]; @@ -46,48 +40,48 @@ (*** Addition ***) -qed_goal "add_0_right" Arith.thy "m + 0 = m" +qed_goal "add_0_right" thy "m + 0 = m" (fn _ => [induct_tac "m" 1, ALLGOALS Asm_simp_tac]); -qed_goal "add_Suc_right" Arith.thy "m + Suc(n) = Suc(m+n)" +qed_goal "add_Suc_right" thy "m + Suc(n) = Suc(m+n)" (fn _ => [induct_tac "m" 1, ALLGOALS Asm_simp_tac]); Addsimps [add_0_right,add_Suc_right]; (*Associative law for addition*) -qed_goal "add_assoc" Arith.thy "(m + n) + k = m + ((n + k)::nat)" +qed_goal "add_assoc" thy "(m + n) + k = m + ((n + k)::nat)" (fn _ => [induct_tac "m" 1, ALLGOALS Asm_simp_tac]); (*Commutative law for addition*) -qed_goal "add_commute" Arith.thy "m + n = n + (m::nat)" +qed_goal "add_commute" thy "m + n = n + (m::nat)" (fn _ => [induct_tac "m" 1, ALLGOALS Asm_simp_tac]); -qed_goal "add_left_commute" Arith.thy "x+(y+z)=y+((x+z)::nat)" +qed_goal "add_left_commute" thy "x+(y+z)=y+((x+z)::nat)" (fn _ => [rtac (add_commute RS trans) 1, rtac (add_assoc RS trans) 1, rtac (add_commute RS arg_cong) 1]); (*Addition is an AC-operator*) val add_ac = [add_assoc, add_commute, add_left_commute]; -goal Arith.thy "!!k::nat. (k + m = k + n) = (m=n)"; +goal thy "!!k::nat. (k + m = k + n) = (m=n)"; by (induct_tac "k" 1); by (Simp_tac 1); by (Asm_simp_tac 1); qed "add_left_cancel"; -goal Arith.thy "!!k::nat. (m + k = n + k) = (m=n)"; +goal thy "!!k::nat. (m + k = n + k) = (m=n)"; by (induct_tac "k" 1); by (Simp_tac 1); by (Asm_simp_tac 1); qed "add_right_cancel"; -goal Arith.thy "!!k::nat. (k + m <= k + n) = (m<=n)"; +goal thy "!!k::nat. (k + m <= k + n) = (m<=n)"; by (induct_tac "k" 1); by (Simp_tac 1); by (Asm_simp_tac 1); qed "add_left_cancel_le"; -goal Arith.thy "!!k::nat. (k + m < k + n) = (m m+(n-(Suc k)) = (m+n)-(Suc k)" *) -goal Arith.thy "!!n. 0 m + (n-1) = (m+n)-1"; +goal thy "!!n. 0 m + (n-1) = (m+n)-1"; by (exhaust_tac "m" 1); by (ALLGOALS (asm_simp_tac (simpset() addsimps [diff_Suc] addsplits [expand_nat_case]))); @@ -127,7 +121,7 @@ (**** Additional theorems about "less than" ****) -goal Arith.thy "i (EX k. j = Suc(i+k))"; +goal thy "i (EX k. j = Suc(i+k))"; by (induct_tac "j" 1); by (Simp_tac 1); by (blast_tac (claset() addSEs [less_SucE] @@ -137,21 +131,21 @@ (* [| i Q |] ==> Q *) bind_thm ("less_natE", lemma RS mp RS exE); -goal Arith.thy "!!m. m (? k. n=Suc(m+k))"; +goal thy "!!m. m (? k. n=Suc(m+k))"; by (induct_tac "n" 1); by (ALLGOALS (simp_tac (simpset() addsimps [less_Suc_eq]))); by (blast_tac (claset() addSEs [less_SucE] addSIs [add_0_right RS sym, add_Suc_right RS sym]) 1); qed_spec_mp "less_eq_Suc_add"; -goal Arith.thy "n <= ((m + n)::nat)"; +goal thy "n <= ((m + n)::nat)"; by (induct_tac "m" 1); by (ALLGOALS Simp_tac); by (etac le_trans 1); by (rtac (lessI RS less_imp_le) 1); qed "le_add2"; -goal Arith.thy "n <= ((n + m)::nat)"; +goal thy "n <= ((n + m)::nat)"; by (simp_tac (simpset() addsimps add_ac) 1); by (rtac le_add2 1); qed "le_add1"; @@ -171,49 +165,49 @@ (*"i < j ==> i < m+j"*) bind_thm ("trans_less_add2", le_add2 RSN (2,less_le_trans)); -goal Arith.thy "!!i. i+j < (k::nat) ==> i i m <= n+k"; +goal thy "!!k::nat. m <= n ==> m <= n+k"; by (etac le_trans 1); by (rtac le_add1 1); qed "le_imp_add_le"; -goal Arith.thy "!!k::nat. m < n ==> m < n+k"; +goal thy "!!k::nat. m < n ==> m < n+k"; by (etac less_le_trans 1); by (rtac le_add1 1); qed "less_imp_add_less"; -goal Arith.thy "m+k<=n --> m<=(n::nat)"; +goal thy "m+k<=n --> m<=(n::nat)"; by (induct_tac "k" 1); by (ALLGOALS Asm_simp_tac); by (blast_tac (claset() addDs [Suc_leD]) 1); qed_spec_mp "add_leD1"; -goal Arith.thy "!!n::nat. m+k<=n ==> k<=n"; +goal thy "!!n::nat. m+k<=n ==> k<=n"; by (full_simp_tac (simpset() addsimps [add_commute]) 1); by (etac add_leD1 1); qed_spec_mp "add_leD2"; -goal Arith.thy "!!n::nat. m+k<=n ==> m<=n & k<=n"; +goal thy "!!n::nat. m+k<=n ==> m<=n & k<=n"; by (blast_tac (claset() addDs [add_leD1, add_leD2]) 1); bind_thm ("add_leE", result() RS conjE); -goal Arith.thy "!!k l::nat. [| k m m i + k < j + k"; +goal thy "!!i j k::nat. i < j ==> i + k < j + k"; by (induct_tac "k" 1); by (ALLGOALS Asm_simp_tac); qed "add_less_mono1"; (*strict, in both arguments*) -goal Arith.thy "!!i j k::nat. [|i < j; k < l|] ==> i + k < j + l"; +goal thy "!!i j k::nat. [|i < j; k < l|] ==> i + k < j + l"; by (rtac (add_less_mono1 RS less_trans) 1); by (REPEAT (assume_tac 1)); by (induct_tac "j" 1); @@ -240,7 +234,7 @@ qed "add_less_mono"; (*A [clumsy] way of lifting < monotonicity to <= monotonicity *) -val [lt_mono,le] = goal Arith.thy +val [lt_mono,le] = goal thy "[| !!i j::nat. i f(i) < f(j); \ \ i <= j \ \ |] ==> f(i) <= (f(j)::nat)"; @@ -250,14 +244,14 @@ qed "less_mono_imp_le_mono"; (*non-strict, in 1st argument*) -goal Arith.thy "!!i j k::nat. i<=j ==> i + k <= j + k"; +goal thy "!!i j k::nat. i<=j ==> i + k <= j + k"; by (res_inst_tac [("f", "%j. j+k")] less_mono_imp_le_mono 1); by (etac add_less_mono1 1); by (assume_tac 1); qed "add_le_mono1"; (*non-strict, in both arguments*) -goal Arith.thy "!!k l::nat. [|i<=j; k<=l |] ==> i + k <= j + l"; +goal thy "!!k l::nat. [|i<=j; k<=l |] ==> i + k <= j + l"; by (etac (add_le_mono1 RS le_trans) 1); by (simp_tac (simpset() addsimps [add_commute]) 1); (*j moves to the end because it is free while k, l are bound*) @@ -268,56 +262,56 @@ (*** Multiplication ***) (*right annihilation in product*) -qed_goal "mult_0_right" Arith.thy "m * 0 = 0" +qed_goal "mult_0_right" thy "m * 0 = 0" (fn _ => [induct_tac "m" 1, ALLGOALS Asm_simp_tac]); (*right successor law for multiplication*) -qed_goal "mult_Suc_right" Arith.thy "m * Suc(n) = m + (m * n)" +qed_goal "mult_Suc_right" thy "m * Suc(n) = m + (m * n)" (fn _ => [induct_tac "m" 1, ALLGOALS(asm_simp_tac (simpset() addsimps add_ac))]); Addsimps [mult_0_right, mult_Suc_right]; -goal Arith.thy "1 * n = n"; +goal thy "1 * n = n"; by (Asm_simp_tac 1); qed "mult_1"; -goal Arith.thy "n * 1 = n"; +goal thy "n * 1 = n"; by (Asm_simp_tac 1); qed "mult_1_right"; (*Commutative law for multiplication*) -qed_goal "mult_commute" Arith.thy "m * n = n * (m::nat)" +qed_goal "mult_commute" thy "m * n = n * (m::nat)" (fn _ => [induct_tac "m" 1, ALLGOALS Asm_simp_tac]); (*addition distributes over multiplication*) -qed_goal "add_mult_distrib" Arith.thy "(m + n)*k = (m*k) + ((n*k)::nat)" +qed_goal "add_mult_distrib" thy "(m + n)*k = (m*k) + ((n*k)::nat)" (fn _ => [induct_tac "m" 1, ALLGOALS(asm_simp_tac (simpset() addsimps add_ac))]); -qed_goal "add_mult_distrib2" Arith.thy "k*(m + n) = (k*m) + ((k*n)::nat)" +qed_goal "add_mult_distrib2" thy "k*(m + n) = (k*m) + ((k*n)::nat)" (fn _ => [induct_tac "m" 1, ALLGOALS(asm_simp_tac (simpset() addsimps add_ac))]); (*Associative law for multiplication*) -qed_goal "mult_assoc" Arith.thy "(m * n) * k = m * ((n * k)::nat)" +qed_goal "mult_assoc" thy "(m * n) * k = m * ((n * k)::nat)" (fn _ => [induct_tac "m" 1, ALLGOALS (asm_simp_tac (simpset() addsimps [add_mult_distrib]))]); -qed_goal "mult_left_commute" Arith.thy "x*(y*z) = y*((x*z)::nat)" +qed_goal "mult_left_commute" thy "x*(y*z) = y*((x*z)::nat)" (fn _ => [rtac trans 1, rtac mult_commute 1, rtac trans 1, rtac mult_assoc 1, rtac (mult_commute RS arg_cong) 1]); val mult_ac = [mult_assoc,mult_commute,mult_left_commute]; -goal Arith.thy "(m*n = 0) = (m=0 | n=0)"; +goal thy "(m*n = 0) = (m=0 | n=0)"; by (induct_tac "m" 1); by (induct_tac "n" 2); by (ALLGOALS Asm_simp_tac); qed "mult_is_0"; Addsimps [mult_is_0]; -goal Arith.thy "!!m::nat. m <= m*m"; +goal thy "!!m::nat. m <= m*m"; by (induct_tac "m" 1); by (ALLGOALS (asm_simp_tac (simpset() addsimps [add_assoc RS sym]))); by (etac (le_add2 RSN (2,le_trans)) 1); @@ -327,21 +321,21 @@ (*** Difference ***) -qed_goal "diff_self_eq_0" Arith.thy "m - m = 0" +qed_goal "diff_self_eq_0" thy "m - m = 0" (fn _ => [induct_tac "m" 1, ALLGOALS Asm_simp_tac]); Addsimps [diff_self_eq_0]; (*Addition is the inverse of subtraction: if n<=m then n+(m-n) = m. *) -goal Arith.thy "~ m n+(m-n) = (m::nat)"; +goal thy "~ m n+(m-n) = (m::nat)"; by (res_inst_tac [("m","m"),("n","n")] diff_induct 1); by (ALLGOALS Asm_simp_tac); qed_spec_mp "add_diff_inverse"; -goal Arith.thy "!!m. n<=m ==> n+(m-n) = (m::nat)"; +goal thy "!!m. n<=m ==> n+(m-n) = (m::nat)"; by (asm_simp_tac (simpset() addsimps [add_diff_inverse, not_less_iff_le]) 1); qed "le_add_diff_inverse"; -goal Arith.thy "!!m. n<=m ==> (m-n)+n = (m::nat)"; +goal thy "!!m. n<=m ==> (m-n)+n = (m::nat)"; by (asm_simp_tac (simpset() addsimps [le_add_diff_inverse, add_commute]) 1); qed "le_add_diff_inverse2"; @@ -350,25 +344,28 @@ (*** More results about difference ***) -val [prem] = goal Arith.thy "n < Suc(m) ==> Suc(m)-n = Suc(m-n)"; +val [prem] = goal thy "n < Suc(m) ==> Suc(m)-n = Suc(m-n)"; by (rtac (prem RS rev_mp) 1); by (res_inst_tac [("m","m"),("n","n")] diff_induct 1); by (ALLGOALS Asm_simp_tac); qed "Suc_diff_n"; -goal Arith.thy "m - n < Suc(m)"; +goal thy "m - n < Suc(m)"; by (res_inst_tac [("m","m"),("n","n")] diff_induct 1); by (etac less_SucE 3); by (ALLGOALS (asm_simp_tac (simpset() addsimps [less_Suc_eq]))); qed "diff_less_Suc"; -goal Arith.thy "!!m::nat. m - n <= m"; +goal thy "!!m::nat. m - n <= m"; by (res_inst_tac [("m","m"), ("n","n")] diff_induct 1); by (ALLGOALS Asm_simp_tac); qed "diff_le_self"; Addsimps [diff_le_self]; -goal Arith.thy "!!i::nat. i-j-k = i - (j+k)"; +(* j j-n < k *) +bind_thm ("less_imp_diff_less", diff_le_self RS le_less_trans); + +goal thy "!!i::nat. i-j-k = i - (j+k)"; by (res_inst_tac [("m","i"),("n","j")] diff_induct 1); by (ALLGOALS Asm_simp_tac); qed "diff_diff_left"; @@ -376,95 +373,111 @@ (* This is a trivial consequence of diff_diff_left; could be got rid of if diff_diff_left were in the simpset... *) -goal Arith.thy "(Suc m - n)-1 = m - n"; +goal thy "(Suc m - n)-1 = m - n"; by (simp_tac (simpset() addsimps [diff_diff_left]) 1); qed "pred_Suc_diff"; Addsimps [pred_Suc_diff]; +goal thy "!!n. 0 n - Suc i < n"; +by (res_inst_tac [("n","n")] natE 1); +by Safe_tac; +by (asm_simp_tac (simpset() addsimps [le_eq_less_Suc RS sym]) 1); +qed "diff_Suc_less"; +Addsimps [diff_Suc_less]; + +goal thy "!!n::nat. m - n <= Suc m - n"; +by (res_inst_tac [("m","m"),("n","n")] diff_induct 1); +by (ALLGOALS Asm_simp_tac); +qed "diff_le_Suc_diff"; + (*This and the next few suggested by Florian Kammueller*) -goal Arith.thy "!!i::nat. i-j-k = i-k-j"; +goal thy "!!i::nat. i-j-k = i-k-j"; by (simp_tac (simpset() addsimps [diff_diff_left, add_commute]) 1); qed "diff_commute"; -goal Arith.thy "!!i j k:: nat. k<=j --> j<=i --> i - (j - k) = i - j + k"; +goal thy "!!i j k:: nat. k<=j --> j<=i --> i - (j - k) = i - j + k"; by (res_inst_tac [("m","i"),("n","j")] diff_induct 1); by (ALLGOALS Asm_simp_tac); by (asm_simp_tac (simpset() addsimps [Suc_diff_n, le_imp_less_Suc, le_Suc_eq]) 1); qed_spec_mp "diff_diff_right"; -goal Arith.thy "!!i j k:: nat. k<=j --> (i + j) - k = i + (j - k)"; +goal thy "!!i j k:: nat. k<=j --> (i + j) - k = i + (j - k)"; by (res_inst_tac [("m","j"),("n","k")] diff_induct 1); by (ALLGOALS Asm_simp_tac); qed_spec_mp "diff_add_assoc"; -goal Arith.thy "!!n::nat. (n+m) - n = m"; +goal thy "!!i j k:: nat. k<=j --> (j + i) - k = i + (j - k)"; +by (asm_simp_tac (simpset() addsimps [add_commute, diff_add_assoc]) 1); +qed_spec_mp "diff_add_assoc2"; + +goal thy "!!n::nat. (n+m) - n = m"; by (induct_tac "n" 1); by (ALLGOALS Asm_simp_tac); qed "diff_add_inverse"; Addsimps [diff_add_inverse]; -goal Arith.thy "!!n::nat.(m+n) - n = m"; +goal thy "!!n::nat.(m+n) - n = m"; by (simp_tac (simpset() addsimps [diff_add_assoc]) 1); qed "diff_add_inverse2"; Addsimps [diff_add_inverse2]; -goal Arith.thy "!!i j k::nat. i<=j ==> (j-i=k) = (j=k+i)"; +goal thy "!!i j k::nat. i<=j ==> (j-i=k) = (j=k+i)"; by Safe_tac; by (ALLGOALS Asm_simp_tac); qed "le_imp_diff_is_add"; -val [prem] = goal Arith.thy "m < Suc(n) ==> m-n = 0"; +val [prem] = goal thy "m < Suc(n) ==> m-n = 0"; by (rtac (prem RS rev_mp) 1); by (res_inst_tac [("m","m"),("n","n")] diff_induct 1); by (asm_simp_tac (simpset() addsimps [less_Suc_eq]) 1); by (ALLGOALS Asm_simp_tac); qed "less_imp_diff_is_0"; -val prems = goal Arith.thy "m-n = 0 --> n-m = 0 --> m=n"; +val prems = goal thy "m-n = 0 --> n-m = 0 --> m=n"; by (res_inst_tac [("m","m"),("n","n")] diff_induct 1); by (REPEAT(Simp_tac 1 THEN TRY(atac 1))); qed_spec_mp "diffs0_imp_equal"; -val [prem] = goal Arith.thy "m 0 0 (!n. P(Suc(n))--> P(n)) --> P(k-i)"; +goal thy "P(k) --> (!n. P(Suc(n))--> P(n)) --> P(k-i)"; by (res_inst_tac [("m","k"),("n","i")] diff_induct 1); by (ALLGOALS (Clarify_tac THEN' Simp_tac THEN' TRY o Blast_tac)); qed "zero_induct_lemma"; -val prems = goal Arith.thy "[| P(k); !!n. P(Suc(n)) ==> P(n) |] ==> P(0)"; +val prems = goal thy "[| P(k); !!n. P(Suc(n)) ==> P(n) |] ==> P(0)"; by (rtac (diff_self_eq_0 RS subst) 1); by (rtac (zero_induct_lemma RS mp RS mp) 1); by (REPEAT (ares_tac ([impI,allI]@prems) 1)); qed "zero_induct"; -goal Arith.thy "!!k::nat. (k+m) - (k+n) = m - n"; +goal thy "!!k::nat. (k+m) - (k+n) = m - n"; by (induct_tac "k" 1); by (ALLGOALS Asm_simp_tac); qed "diff_cancel"; Addsimps [diff_cancel]; -goal Arith.thy "!!m::nat. (m+k) - (n+k) = m - n"; +goal thy "!!m::nat. (m+k) - (n+k) = m - n"; val add_commute_k = read_instantiate [("n","k")] add_commute; by (asm_simp_tac (simpset() addsimps ([add_commute_k])) 1); qed "diff_cancel2"; Addsimps [diff_cancel2]; (*From Clemens Ballarin*) -goal Arith.thy "!!n::nat. [| k<=n; n<=m |] ==> (m-k) - (n-k) = m-n"; +goal thy "!!n::nat. [| k<=n; n<=m |] ==> (m-k) - (n-k) = m-n"; by (subgoal_tac "k<=n --> n<=m --> (m-k) - (n-k) = m-n" 1); by (Asm_full_simp_tac 1); by (induct_tac "k" 1); @@ -479,7 +492,7 @@ addsimps [Suc_diff_n RS sym, le_eq_less_Suc]) 1); qed "diff_right_cancel"; -goal Arith.thy "!!n::nat. n - (n+m) = 0"; +goal thy "!!n::nat. n - (n+m) = 0"; by (induct_tac "n" 1); by (ALLGOALS Asm_simp_tac); qed "diff_add_0"; @@ -487,12 +500,12 @@ (** Difference distributes over multiplication **) -goal Arith.thy "!!m::nat. (m - n) * k = (m * k) - (n * k)"; +goal thy "!!m::nat. (m - n) * k = (m * k) - (n * k)"; by (res_inst_tac [("m","m"),("n","n")] diff_induct 1); by (ALLGOALS Asm_simp_tac); qed "diff_mult_distrib" ; -goal Arith.thy "!!m::nat. k * (m - n) = (k * m) - (k * n)"; +goal thy "!!m::nat. k * (m - n) = (k * m) - (k * n)"; val mult_commute_k = read_instantiate [("m","k")] mult_commute; by (simp_tac (simpset() addsimps [diff_mult_distrib, mult_commute_k]) 1); qed "diff_mult_distrib2" ; @@ -501,13 +514,13 @@ (*** Monotonicity of Multiplication ***) -goal Arith.thy "!!i::nat. i<=j ==> i*k<=j*k"; +goal thy "!!i::nat. i<=j ==> i*k<=j*k"; by (induct_tac "k" 1); by (ALLGOALS (asm_simp_tac (simpset() addsimps [add_le_mono]))); qed "mult_le_mono1"; (*<=monotonicity, BOTH arguments*) -goal Arith.thy "!!i::nat. [| i<=j; k<=l |] ==> i*k<=j*l"; +goal thy "!!i::nat. [| i<=j; k<=l |] ==> i*k<=j*l"; by (etac (mult_le_mono1 RS le_trans) 1); by (rtac le_trans 1); by (stac mult_commute 2); @@ -516,26 +529,26 @@ qed "mult_le_mono"; (*strict, in 1st argument; proof is by induction on k>0*) -goal Arith.thy "!!i::nat. [| i k*i < k*j"; +goal thy "!!i::nat. [| i k*i < k*j"; by (eres_inst_tac [("i","0")] less_natE 1); by (Asm_simp_tac 1); by (induct_tac "x" 1); by (ALLGOALS (asm_simp_tac (simpset() addsimps [add_less_mono]))); qed "mult_less_mono2"; -goal Arith.thy "!!i::nat. [| i i*k < j*k"; +goal thy "!!i::nat. [| i i*k < j*k"; by (dtac mult_less_mono2 1); by (ALLGOALS (asm_full_simp_tac (simpset() addsimps [mult_commute]))); qed "mult_less_mono1"; -goal Arith.thy "(0 < m*n) = (0 (m*k < n*k) = (m (m*k < n*k) = (m (k*m < k*n) = (m (k*m < k*n) = (m (m*k = n*k) = (m=n)"; +goal thy "!!k. 0 (m*k = n*k) = (m=n)"; by (cut_facts_tac [less_linear] 1); by Safe_tac; by (assume_tac 2); @@ -574,13 +587,13 @@ by (ALLGOALS Asm_full_simp_tac); qed "mult_cancel2"; -goal Arith.thy "!!k. 0 (k*m = k*n) = (m=n)"; +goal thy "!!k. 0 (k*m = k*n) = (m=n)"; by (dtac mult_cancel2 1); by (asm_full_simp_tac (simpset() addsimps [mult_commute]) 1); qed "mult_cancel1"; Addsimps [mult_cancel1, mult_cancel2]; -goal Arith.thy "(Suc k * m = Suc k * n) = (m = n)"; +goal thy "(Suc k * m = Suc k * n) = (m = n)"; by (rtac mult_cancel1 1); by (Simp_tac 1); qed "Suc_mult_cancel1"; @@ -588,7 +601,7 @@ (** Lemma for gcd **) -goal Arith.thy "!!m n. m = m*n ==> n=1 | m=0"; +goal thy "!!m n. m = m*n ==> n=1 | m=0"; by (dtac sym 1); by (rtac disjCI 1); by (rtac nat_less_cases 1 THEN assume_tac 2); @@ -599,7 +612,7 @@ (*** Subtraction laws -- from Clemens Ballarin ***) -goal Arith.thy "!! a b c::nat. [| a < b; c <= a |] ==> a-c < b-c"; +goal thy "!! a b c::nat. [| a < b; c <= a |] ==> a-c < b-c"; by (subgoal_tac "c+(a-c) < c+(b-c)" 1); by (Full_simp_tac 1); by (subgoal_tac "c <= b" 1); @@ -607,29 +620,29 @@ by (Asm_simp_tac 1); qed "diff_less_mono"; -goal Arith.thy "!! a b c::nat. a+b < c ==> a < c-b"; +goal thy "!! a b c::nat. a+b < c ==> a < c-b"; by (dtac diff_less_mono 1); by (rtac le_add2 1); by (Asm_full_simp_tac 1); qed "add_less_imp_less_diff"; -goal Arith.thy "!! n. n <= m ==> Suc m - n = Suc (m - n)"; +goal thy "!! n. n <= m ==> Suc m - n = Suc (m - n)"; by (asm_full_simp_tac (simpset() addsimps [Suc_diff_n, le_eq_less_Suc]) 1); qed "Suc_diff_le"; -goal Arith.thy "!! n. Suc i <= n ==> Suc (n - Suc i) = n - i"; +goal thy "!! n. Suc i <= n ==> Suc (n - Suc i) = n - i"; by (asm_full_simp_tac (simpset() addsimps [Suc_diff_n RS sym, le_eq_less_Suc]) 1); qed "Suc_diff_Suc"; -goal Arith.thy "!! i::nat. i <= n ==> n - (n - i) = i"; +goal thy "!! i::nat. i <= n ==> n - (n - i) = i"; by (etac rev_mp 1); by (res_inst_tac [("m","n"),("n","i")] diff_induct 1); by (ALLGOALS (asm_simp_tac (simpset() addsimps [Suc_diff_le]))); qed "diff_diff_cancel"; Addsimps [diff_diff_cancel]; -goal Arith.thy "!!k::nat. k <= n ==> m <= n + m - k"; +goal thy "!!k::nat. k <= n ==> m <= n + m - k"; by (etac rev_mp 1); by (res_inst_tac [("m", "k"), ("n", "n")] diff_induct 1); by (Simp_tac 1); @@ -638,22 +651,18 @@ qed "le_add_diff"; + (** (Anti)Monotonicity of subtraction -- by Stefan Merz **) (* Monotonicity of subtraction in first argument *) -goal Arith.thy "!!n::nat. m<=n --> (m-l) <= (n-l)"; +goal thy "!!n::nat. m<=n --> (m-l) <= (n-l)"; by (induct_tac "n" 1); by (Simp_tac 1); by (simp_tac (simpset() addsimps [le_Suc_eq]) 1); -by (rtac impI 1); -by (etac impE 1); -by (atac 1); -by (etac le_trans 1); -by (res_inst_tac [("m1","n")] (pred_Suc_diff RS subst) 1); -by (simp_tac (simpset() addsimps [diff_Suc] addsplits [expand_nat_case]) 1); +by (blast_tac (claset() addIs [diff_le_Suc_diff, le_trans]) 1); qed_spec_mp "diff_le_mono"; -goal Arith.thy "!!n::nat. m<=n ==> (l-n) <= (l-m)"; +goal thy "!!n::nat. m<=n ==> (l-n) <= (l-m)"; by (induct_tac "l" 1); by (Simp_tac 1); by (case_tac "n <= l" 1);