# HG changeset patch # User wenzelm # Date 1160353191 -7200 # Node ID 113c9516a2d76c9c7c96a41aa119fbc390101d6b # Parent 3f8d2834b2c49f6cd856e31003c43cfa90e1dbaf attribute symmetric: zero_var_indexes; diff -r 3f8d2834b2c4 -r 113c9516a2d7 src/HOL/Hyperreal/HSeries.thy --- a/src/HOL/Hyperreal/HSeries.thy Mon Oct 09 02:19:49 2006 +0200 +++ b/src/HOL/Hyperreal/HSeries.thy Mon Oct 09 02:19:51 2006 +0200 @@ -83,7 +83,7 @@ done lemma sumhr_split_diff: "n

sumhr(0,p,f) - sumhr(0,n,f) = sumhr(n,p,f)" -by (drule_tac f1 = f in sumhr_split_add [symmetric], simp) +by (drule_tac f = f in sumhr_split_add [symmetric], simp) lemma sumhr_hrabs: "abs(sumhr(m,n,f)) \ sumhr(m,n,%i. abs(f i))" apply (cases n, cases m) diff -r 3f8d2834b2c4 -r 113c9516a2d7 src/HOL/Hyperreal/HTranscendental.thy --- a/src/HOL/Hyperreal/HTranscendental.thy Mon Oct 09 02:19:49 2006 +0200 +++ b/src/HOL/Hyperreal/HTranscendental.thy Mon Oct 09 02:19:51 2006 +0200 @@ -71,7 +71,7 @@ lemma hypreal_inverse_sqrt_pow2: "0 < x ==> inverse (( *f* sqrt)(x)) ^ 2 = inverse x" -apply (cut_tac n1 = 2 and a1 = "( *f* sqrt) x" in power_inverse [symmetric]) +apply (cut_tac n = 2 and a = "( *f* sqrt) x" in power_inverse [symmetric]) apply (auto dest: hypreal_sqrt_gt_zero_pow2) done diff -r 3f8d2834b2c4 -r 113c9516a2d7 src/HOL/Hyperreal/NthRoot.thy --- a/src/HOL/Hyperreal/NthRoot.thy Mon Oct 09 02:19:49 2006 +0200 +++ b/src/HOL/Hyperreal/NthRoot.thy Mon Oct 09 02:19:51 2006 +0200 @@ -358,7 +358,7 @@ done lemma real_inv_sqrt_pow2: "0 < x ==> inverse (sqrt(x)) ^ 2 = inverse x" -by (cut_tac n1 = 2 and a1 = "sqrt x" in power_inverse [symmetric], auto) +by (cut_tac n = 2 and a = "sqrt x" in power_inverse [symmetric], auto) lemma real_sqrt_eq_zero_cancel: "[| 0 \ x; sqrt(x) = 0|] ==> x = 0" apply (drule real_le_imp_less_or_eq) diff -r 3f8d2834b2c4 -r 113c9516a2d7 src/HOL/Hyperreal/Poly.thy --- a/src/HOL/Hyperreal/Poly.thy Mon Oct 09 02:19:49 2006 +0200 +++ b/src/HOL/Hyperreal/Poly.thy Mon Oct 09 02:19:51 2006 +0200 @@ -964,7 +964,7 @@ apply (simp add: rsquarefree_def, safe) apply (frule_tac a = a in order_decomp) apply (drule_tac x = a in spec) -apply (drule_tac a1 = a in order_root2 [symmetric]) +apply (drule_tac a = a in order_root2 [symmetric]) apply (auto simp del: pmult_Cons) apply (rule_tac x = q in exI, safe) apply (simp add: poly_mult fun_eq) diff -r 3f8d2834b2c4 -r 113c9516a2d7 src/HOL/NumberTheory/Gauss.thy --- a/src/HOL/NumberTheory/Gauss.thy Mon Oct 09 02:19:49 2006 +0200 +++ b/src/HOL/NumberTheory/Gauss.thy Mon Oct 09 02:19:51 2006 +0200 @@ -308,7 +308,7 @@ lemma (in GAUSS) C_B_zcong_prod: "[setprod id C = setprod id B] (mod p)" apply (auto simp add: C_def) apply (insert finite_B SR_B_inj) - apply (frule_tac f1 = "StandardRes p" in setprod_reindex_id [symmetric], auto) + apply (frule_tac f = "StandardRes p" in setprod_reindex_id [symmetric], auto) apply (rule setprod_same_function_zcong) apply (auto simp add: StandardRes_prop1 zcong_sym p_g_0) done diff -r 3f8d2834b2c4 -r 113c9516a2d7 src/HOL/NumberTheory/Quadratic_Reciprocity.thy --- a/src/HOL/NumberTheory/Quadratic_Reciprocity.thy Mon Oct 09 02:19:49 2006 +0200 +++ b/src/HOL/NumberTheory/Quadratic_Reciprocity.thy Mon Oct 09 02:19:51 2006 +0200 @@ -604,7 +604,7 @@ nat(setsum (%x. ((x * q) div p)) P_set) = nat((setsum (%x. ((x * p) div q)) Q_set) + (setsum (%x. ((x * q) div p)) P_set))" - apply (rule_tac z1 = "setsum (%x. ((x * p) div q)) Q_set" in + apply (rule_tac z = "setsum (%x. ((x * p) div q)) Q_set" in nat_add_distrib [symmetric]) apply (auto simp add: S1_carda [symmetric] S2_carda [symmetric]) done diff -r 3f8d2834b2c4 -r 113c9516a2d7 src/Pure/Isar/calculation.ML --- a/src/Pure/Isar/calculation.ML Mon Oct 09 02:19:49 2006 +0200 +++ b/src/Pure/Isar/calculation.ML Mon Oct 09 02:19:51 2006 +0200 @@ -85,7 +85,7 @@ val symmetric = Thm.rule_attribute (fn x => fn th => (case Seq.chop 2 (Drule.multi_resolves [th] (#2 (#1 (CalculationData.get x)))) of - ([th'], _) => th' + ([th'], _) => Drule.zero_var_indexes th' | ([], _) => raise THM ("symmetric: no unifiers", 1, [th]) | _ => raise THM ("symmetric: multiple unifiers", 1, [th]))); diff -r 3f8d2834b2c4 -r 113c9516a2d7 src/ZF/Induct/Multiset.thy --- a/src/ZF/Induct/Multiset.thy Mon Oct 09 02:19:49 2006 +0200 +++ b/src/ZF/Induct/Multiset.thy Mon Oct 09 02:19:51 2006 +0200 @@ -637,8 +637,8 @@ shows "P(M)" apply (rule multiset_induct2 [OF M]) apply (simp_all add: P0) -apply (frule_tac [2] a1 = b in munion_single_case2 [symmetric]) -apply (frule_tac a1 = a in munion_single_case1 [symmetric]) +apply (frule_tac [2] a = b in munion_single_case2 [symmetric]) +apply (frule_tac a = a in munion_single_case1 [symmetric]) apply (auto intro: step) done