# HG changeset patch # User wenzelm # Date 1178837025 -7200 # Node ID 11cc1ccad58e46f48ffef051c67033d1d888c37e # Parent f99617e7103f3a2fbf4f1d10e9920f634983c6b0 tuned proofs; diff -r f99617e7103f -r 11cc1ccad58e src/FOL/IFOL.thy --- a/src/FOL/IFOL.thy Thu May 10 22:11:38 2007 +0200 +++ b/src/FOL/IFOL.thy Fri May 11 00:43:45 2007 +0200 @@ -676,37 +676,37 @@ lemma atomize_all [atomize]: "(!!x. P(x)) == Trueprop (ALL x. P(x))" proof assume "!!x. P(x)" - show "ALL x. P(x)" .. + then show "ALL x. P(x)" .. next assume "ALL x. P(x)" - thus "!!x. P(x)" .. + then show "!!x. P(x)" .. qed lemma atomize_imp [atomize]: "(A ==> B) == Trueprop (A --> B)" proof assume "A ==> B" - thus "A --> B" .. + then show "A --> B" .. next assume "A --> B" and A - thus B by (rule mp) + then show B by (rule mp) qed lemma atomize_eq [atomize]: "(x == y) == Trueprop (x = y)" proof assume "x == y" - show "x = y" by (unfold prems) (rule refl) + show "x = y" unfolding `x == y` by (rule refl) next assume "x = y" - thus "x == y" by (rule eq_reflection) + then show "x == y" by (rule eq_reflection) qed lemma atomize_iff [atomize]: "(A == B) == Trueprop (A <-> B)" proof assume "A == B" - show "A <-> B" by (unfold prems) (rule iff_refl) + show "A <-> B" unfolding `A == B` by (rule iff_refl) next assume "A <-> B" - thus "A == B" by (rule iff_reflection) + then show "A == B" by (rule iff_reflection) qed lemma atomize_conj [atomize]: diff -r f99617e7103f -r 11cc1ccad58e src/FOL/ex/LocaleTest.thy --- a/src/FOL/ex/LocaleTest.thy Thu May 10 22:11:38 2007 +0200 +++ b/src/FOL/ex/LocaleTest.thy Fri May 11 00:43:45 2007 +0200 @@ -173,7 +173,7 @@ ML {* check_thm "i2.th_x"; check_thm "i3.th_x" *} -lemma (in ID) th_y: "d == (a = b)" . +lemma (in ID) th_y: "d == (a = b)" by fact thm i2.th_y thm i3.th_y diff -r f99617e7103f -r 11cc1ccad58e src/HOL/Algebra/UnivPoly.thy --- a/src/HOL/Algebra/UnivPoly.thy Thu May 10 22:11:38 2007 +0200 +++ b/src/HOL/Algebra/UnivPoly.thy Fri May 11 00:43:45 2007 +0200 @@ -1229,7 +1229,8 @@ shows "eval R S h s (monom P r n) = h r \\<^bsub>S\<^esub> s (^)\<^bsub>S\<^esub> n" proof - interpret UP_univ_prop [R S h P s _] - by (auto! intro: UP_univ_prop.intro UP_univ_prop_axioms.intro) + using `UP_pre_univ_prop R S h` P_def R S + by (auto intro: UP_univ_prop.intro UP_univ_prop_axioms.intro) from R show ?thesis by (rule Eval_monom) qed diff -r f99617e7103f -r 11cc1ccad58e src/HOL/Algebra/poly/UnivPoly2.thy --- a/src/HOL/Algebra/poly/UnivPoly2.thy Thu May 10 22:11:38 2007 +0200 +++ b/src/HOL/Algebra/poly/UnivPoly2.thy Fri May 11 00:43:45 2007 +0200 @@ -187,11 +187,11 @@ have "f i * g (k-i) = 0" proof cases assume "n < i" - show ?thesis by (auto! simp add: ring_simps) + with `bound n f` show ?thesis by (auto simp add: ring_simps) next assume "~ (n < i)" with bound have "m < k-i" by arith - then show ?thesis by (auto! simp add: ring_simps) + with `bound m g` show ?thesis by (auto simp add: ring_simps) qed } then show "setsum (%i. f i * g (k-i)) {..k} = 0" diff -r f99617e7103f -r 11cc1ccad58e src/HOL/Real/HahnBanach/FunctionNorm.thy --- a/src/HOL/Real/HahnBanach/FunctionNorm.thy Thu May 10 22:11:38 2007 +0200 +++ b/src/HOL/Real/HahnBanach/FunctionNorm.thy Fri May 11 00:43:45 2007 +0200 @@ -266,6 +266,6 @@ qed finally show ?thesis . qed -qed (simp_all! add: continuous_def) +qed (insert `continuous V norm f`, simp_all add: continuous_def) end diff -r f99617e7103f -r 11cc1ccad58e src/HOL/ZF/Zet.thy --- a/src/HOL/ZF/Zet.thy Thu May 10 22:11:38 2007 +0200 +++ b/src/HOL/ZF/Zet.thy Fri May 11 00:43:45 2007 +0200 @@ -53,7 +53,7 @@ shows "Inv A g (g x) \ A" apply (simp add: Inv_def) apply (rule someI2) - apply (auto!) + using `x \ A` apply auto done lemma zet_image_mem: diff -r f99617e7103f -r 11cc1ccad58e src/ZF/ex/Group.thy --- a/src/ZF/ex/Group.thy Thu May 10 22:11:38 2007 +0200 +++ b/src/ZF/ex/Group.thy Fri May 11 00:43:45 2007 +0200 @@ -64,13 +64,13 @@ by (simp add: update_carrier_def) lemma carrier_update_carrier [simp]: "carrier(update_carrier(M,B)) = B" -by (simp add: update_carrier_def) + by (simp add: update_carrier_def) lemma mult_update_carrier [simp]: "mmult(update_carrier(M,B),x,y) = mmult(M,x,y)" -by (simp add: update_carrier_def mmult_def) + by (simp add: update_carrier_def mmult_def) lemma one_update_carrier [simp]: "one(update_carrier(M,B)) = one(M)" -by (simp add: update_carrier_def one_def) + by (simp add: update_carrier_def one_def) lemma (in monoid) inv_unique: @@ -92,7 +92,7 @@ assumes inv_ex: "\x. x \ carrier(G) \ \y \ carrier(G). y \ x = \ & x \ y = \" -lemma (in group) is_group [simp]: "group(G)" . +lemma (in group) is_group [simp]: "group(G)" by fact theorem groupI: includes struct G @@ -308,7 +308,7 @@ lemma DirProdGroup_group: includes group G + group H shows "group (G \ H)" -by (force intro!: groupI G.m_assoc H.m_assoc G.l_inv H.l_inv + by (force intro!: groupI G.m_assoc H.m_assoc G.l_inv H.l_inv simp add: DirProdGroup_def) lemma carrier_DirProdGroup [simp]: @@ -322,7 +322,7 @@ lemma mult_DirProdGroup [simp]: "[|g \ carrier(G); h \ carrier(H); g' \ carrier(G); h' \ carrier(H)|] ==> \\<^bsub>G \ H\<^esub> = \<^bsub>G\<^esub> g', h \\<^bsub>H\<^esub> h'>" -by (simp add: DirProdGroup_def) + by (simp add: DirProdGroup_def) lemma inv_DirProdGroup [simp]: includes group G + group H @@ -366,7 +366,7 @@ "G \ H == hom(G,H) \ bij(carrier(G), carrier(H))" lemma (in group) iso_refl: "id(carrier(G)) \ G \ G" -by (simp add: iso_def hom_def id_type id_bij) + by (simp add: iso_def hom_def id_type id_bij) lemma (in group) iso_sym: @@ -380,18 +380,18 @@ lemma (in group) iso_trans: "\h \ G \ H; i \ H \ I\ \ i O h \ G \ I" -by (auto simp add: iso_def hom_compose comp_bij) + by (auto simp add: iso_def hom_compose comp_bij) lemma DirProdGroup_commute_iso: includes group G + group H shows "(\ \ carrier(G \ H). ) \ (G \ H) \ (H \ G)" -by (auto simp add: iso_def hom_def inj_def surj_def bij_def) + by (auto simp add: iso_def hom_def inj_def surj_def bij_def) lemma DirProdGroup_assoc_iso: includes group G + group H + group I shows "(\<,z> \ carrier((G \ H) \ I). >) \ ((G \ H) \ I) \ (G \ (H \ I))" -by (auto intro: lam_type simp add: iso_def hom_def inj_def surj_def bij_def) + by (auto intro: lam_type simp add: iso_def hom_def inj_def surj_def bij_def) text{*Basis for homomorphism proofs: we assume two groups @{term G} and @term{H}, with a homomorphism @{term h} between them*} @@ -1003,7 +1003,7 @@ shows "H \ rcosets H" proof - have "H #> \ = H" - by (rule coset_join2, auto) + using _ `subgroup(H, G)` by (rule coset_join2) simp_all then show ?thesis by (auto simp add: RCOSETS_def intro: sym) qed