# HG changeset patch # User nipkow # Date 1047391464 -3600 # Node ID 11d7c5a8dbb79bc98ffa4e991f51e22bab40fdda # Parent f5d08c341216aa1af328317cee13045f25f82321 *** empty log message *** diff -r f5d08c341216 -r 11d7c5a8dbb7 src/HOL/Hoare/Examples.thy --- a/src/HOL/Hoare/Examples.thy Tue Mar 11 15:04:24 2003 +0100 +++ b/src/HOL/Hoare/Examples.thy Tue Mar 11 15:04:24 2003 +0100 @@ -45,7 +45,7 @@ lemma Euclid_GCD: "VARS a b {0 b INV {0 'a com \ 'a com" ("_ \ _" 60) diff -r f5d08c341216 -r 11d7c5a8dbb7 src/HOL/Hoare/Hoare.thy --- a/src/HOL/Hoare/Hoare.thy Tue Mar 11 15:04:24 2003 +0100 +++ b/src/HOL/Hoare/Hoare.thy Tue Mar 11 15:04:24 2003 +0100 @@ -60,7 +60,7 @@ ML{* local -fun free a = Free(a,dummyT) + fun abs((a,T),body) = let val a = absfree(a, dummyT, body) in if T = Bound 0 then a else Const(Syntax.constrainAbsC,dummyT) $ a $ T end @@ -70,9 +70,9 @@ | mk_abstuple (x::xs) body = Syntax.const "split" $ abs (x, mk_abstuple xs body); -fun mk_fbody a e [x as (b,_)] = if a=b then e else free b +fun mk_fbody a e [x as (b,_)] = if a=b then e else Syntax.free b | mk_fbody a e ((b,_)::xs) = - Syntax.const "Pair" $ (if a=b then e else free b) $ mk_fbody a e xs; + Syntax.const "Pair" $ (if a=b then e else Syntax.free b) $ mk_fbody a e xs; fun mk_fexp a e xs = mk_abstuple xs (mk_fbody a e xs) end @@ -193,6 +193,38 @@ print_translation {* [("Valid", spec_tr')] *} +lemma SkipRule: "p \ q \ Valid p (Basic id) q" +by (auto simp:Valid_def) + +lemma BasicRule: "p \ {s. f s \ q} \ Valid p (Basic f) q" +by (auto simp:Valid_def) + +lemma SeqRule: "Valid P c1 Q \ Valid Q c2 R \ Valid P (c1;c2) R" +by (auto simp:Valid_def) + +lemma CondRule: + "p \ {s. (s \ b \ s \ w) \ (s \ b \ s \ w')} + \ Valid w c1 q \ Valid w' c2 q \ Valid p (Cond b c1 c2) q" +by (auto simp:Valid_def) + +lemma iter_aux: "! s s'. Sem c s s' --> s : I & s : b --> s' : I ==> + (\s s'. s : I \ iter n b (Sem c) s s' \ s' : I & s' ~: b)"; +apply(induct n) + apply clarsimp +apply(simp (no_asm_use)) +apply blast +done + +lemma WhileRule: + "p \ i \ Valid (i \ b) c i \ i \ (-b) \ q \ Valid p (While b i c) q" +apply (clarsimp simp:Valid_def) +apply(drule iter_aux) + prefer 2 apply assumption + apply blast +apply blast +done + + use "hoare.ML" method_setup vcg = {* diff -r f5d08c341216 -r 11d7c5a8dbb7 src/HOL/Hoare/HoareAbort.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/Hoare/HoareAbort.thy Tue Mar 11 15:04:24 2003 +0100 @@ -0,0 +1,250 @@ +(* Title: HOL/Hoare/HoareAbort.thy + ID: $Id$ + Author: Leonor Prensa Nieto & Tobias Nipkow + Copyright 2003 TUM + +Like Hoare.thy, but with an Abort statement for modelling run time errors. +*) + +theory HoareAbort = Main +files ("hoareAbort.ML"): + +types + 'a bexp = "'a set" + 'a assn = "'a set" + +datatype + 'a com = Basic "'a \ 'a" + | Abort + | Seq "'a com" "'a com" ("(_;/ _)" [61,60] 60) + | Cond "'a bexp" "'a com" "'a com" ("(1IF _/ THEN _ / ELSE _/ FI)" [0,0,0] 61) + | While "'a bexp" "'a assn" "'a com" ("(1WHILE _/ INV {_} //DO _ /OD)" [0,0,0] 61) + +syntax + "@assign" :: "id => 'b => 'a com" ("(2_ :=/ _)" [70,65] 61) + "@annskip" :: "'a com" ("SKIP") + +translations + "SKIP" == "Basic id" + +types 'a sem = "'a option => 'a option => bool" + +consts iter :: "nat => 'a bexp => 'a sem => 'a sem" +primrec +"iter 0 b S = (%s s'. s ~: Some ` b & (s=s'))" +"iter (Suc n) b S = (%s s'. s : Some ` b & (? s''. S s s'' & iter n b S s'' s'))" + +consts Sem :: "'a com => 'a sem" +primrec +"Sem(Basic f) s s' = (case s of None \ s' = None | Some t \ s' = Some(f t))" +"Sem Abort s s' = (s' = None)" +"Sem(c1;c2) s s' = (? s''. Sem c1 s s'' & Sem c2 s'' s')" +"Sem(IF b THEN c1 ELSE c2 FI) s s' = + (case s of None \ s' = None + | Some t \ ((t : b --> Sem c1 s s') & (t ~: b --> Sem c2 s s')))" +"Sem(While b x c) s s' = + (if s = None then s' = None + else EX n. iter n b (Sem c) s s')" + +constdefs Valid :: "'a bexp \ 'a com \ 'a bexp \ bool" + "Valid p c q == \s s'. Sem c s s' \ s : Some ` p \ s' : Some ` q" + + +syntax + "@hoare_vars" :: "[idts, 'a assn,'a com,'a assn] => bool" + ("VARS _// {_} // _ // {_}" [0,0,55,0] 50) +syntax ("" output) + "@hoare" :: "['a assn,'a com,'a assn] => bool" + ("{_} // _ // {_}" [0,55,0] 50) + +(** parse translations **) + +ML{* + +local +fun free a = Free(a,dummyT) +fun abs((a,T),body) = + let val a = absfree(a, dummyT, body) + in if T = Bound 0 then a else Const(Syntax.constrainAbsC,dummyT) $ a $ T end +in + +fun mk_abstuple [x] body = abs (x, body) + | mk_abstuple (x::xs) body = + Syntax.const "split" $ abs (x, mk_abstuple xs body); + +fun mk_fbody a e [x as (b,_)] = if a=b then e else free b + | mk_fbody a e ((b,_)::xs) = + Syntax.const "Pair" $ (if a=b then e else free b) $ mk_fbody a e xs; + +fun mk_fexp a e xs = mk_abstuple xs (mk_fbody a e xs) +end +*} + +(* bexp_tr & assn_tr *) +(*all meta-variables for bexp except for TRUE are translated as if they + were boolean expressions*) +ML{* +fun bexp_tr (Const ("TRUE", _)) xs = Syntax.const "TRUE" + | bexp_tr b xs = Syntax.const "Collect" $ mk_abstuple xs b; + +fun assn_tr r xs = Syntax.const "Collect" $ mk_abstuple xs r; +*} +(* com_tr *) +ML{* +fun com_tr (Const("@assign",_) $ Free (a,_) $ e) xs = + Syntax.const "Basic" $ mk_fexp a e xs + | com_tr (Const ("Basic",_) $ f) xs = Syntax.const "Basic" $ f + | com_tr (Const ("Seq",_) $ c1 $ c2) xs = + Syntax.const "Seq" $ com_tr c1 xs $ com_tr c2 xs + | com_tr (Const ("Cond",_) $ b $ c1 $ c2) xs = + Syntax.const "Cond" $ bexp_tr b xs $ com_tr c1 xs $ com_tr c2 xs + | com_tr (Const ("While",_) $ b $ I $ c) xs = + Syntax.const "While" $ bexp_tr b xs $ assn_tr I xs $ com_tr c xs + | com_tr t _ = t (* if t is just a Free/Var *) +*} + +(* triple_tr *) +ML{* +local + +fun var_tr(Free(a,_)) = (a,Bound 0) (* Bound 0 = dummy term *) + | var_tr(Const ("_constrain", _) $ (Free (a,_)) $ T) = (a,T); + +fun vars_tr (Const ("_idts", _) $ idt $ vars) = var_tr idt :: vars_tr vars + | vars_tr t = [var_tr t] + +in +fun hoare_vars_tr [vars, pre, prg, post] = + let val xs = vars_tr vars + in Syntax.const "Valid" $ + assn_tr pre xs $ com_tr prg xs $ assn_tr post xs + end + | hoare_vars_tr ts = raise TERM ("hoare_vars_tr", ts); +end +*} + +parse_translation {* [("@hoare_vars", hoare_vars_tr)] *} + + +(*****************************************************************************) + +(*** print translations ***) +ML{* +fun dest_abstuple (Const ("split",_) $ (Abs(v,_, body))) = + subst_bound (Syntax.free v, dest_abstuple body) + | dest_abstuple (Abs(v,_, body)) = subst_bound (Syntax.free v, body) + | dest_abstuple trm = trm; + +fun abs2list (Const ("split",_) $ (Abs(x,T,t))) = Free (x, T)::abs2list t + | abs2list (Abs(x,T,t)) = [Free (x, T)] + | abs2list _ = []; + +fun mk_ts (Const ("split",_) $ (Abs(x,_,t))) = mk_ts t + | mk_ts (Abs(x,_,t)) = mk_ts t + | mk_ts (Const ("Pair",_) $ a $ b) = a::(mk_ts b) + | mk_ts t = [t]; + +fun mk_vts (Const ("split",_) $ (Abs(x,_,t))) = + ((Syntax.free x)::(abs2list t), mk_ts t) + | mk_vts (Abs(x,_,t)) = ([Syntax.free x], [t]) + | mk_vts t = raise Match; + +fun find_ch [] i xs = (false, (Syntax.free "not_ch",Syntax.free "not_ch" )) + | find_ch ((v,t)::vts) i xs = if t=(Bound i) then find_ch vts (i-1) xs + else (true, (v, subst_bounds (xs,t))); + +fun is_f (Const ("split",_) $ (Abs(x,_,t))) = true + | is_f (Abs(x,_,t)) = true + | is_f t = false; +*} + +(* assn_tr' & bexp_tr'*) +ML{* +fun assn_tr' (Const ("Collect",_) $ T) = dest_abstuple T + | assn_tr' (Const ("op Int",_) $ (Const ("Collect",_) $ T1) $ + (Const ("Collect",_) $ T2)) = + Syntax.const "op Int" $ dest_abstuple T1 $ dest_abstuple T2 + | assn_tr' t = t; + +fun bexp_tr' (Const ("Collect",_) $ T) = dest_abstuple T + | bexp_tr' t = t; +*} + +(*com_tr' *) +ML{* +fun mk_assign f = + let val (vs, ts) = mk_vts f; + val (ch, which) = find_ch (vs~~ts) ((length vs)-1) (rev vs) + in if ch then Syntax.const "@assign" $ fst(which) $ snd(which) + else Syntax.const "@skip" end; + +fun com_tr' (Const ("Basic",_) $ f) = if is_f f then mk_assign f + else Syntax.const "Basic" $ f + | com_tr' (Const ("Seq",_) $ c1 $ c2) = Syntax.const "Seq" $ + com_tr' c1 $ com_tr' c2 + | com_tr' (Const ("Cond",_) $ b $ c1 $ c2) = Syntax.const "Cond" $ + bexp_tr' b $ com_tr' c1 $ com_tr' c2 + | com_tr' (Const ("While",_) $ b $ I $ c) = Syntax.const "While" $ + bexp_tr' b $ assn_tr' I $ com_tr' c + | com_tr' t = t; + + +fun spec_tr' [p, c, q] = + Syntax.const "@hoare" $ assn_tr' p $ com_tr' c $ assn_tr' q +*} + +print_translation {* [("Valid", spec_tr')] *} + +(*** The proof rules ***) + +lemma SkipRule: "p \ q \ Valid p (Basic id) q" +by (auto simp:Valid_def) + +lemma BasicRule: "p \ {s. f s \ q} \ Valid p (Basic f) q" +by (auto simp:Valid_def) + +lemma SeqRule: "Valid P c1 Q \ Valid Q c2 R \ Valid P (c1;c2) R" +by (auto simp:Valid_def) + +lemma CondRule: + "p \ {s. (s \ b \ s \ w) \ (s \ b \ s \ w')} + \ Valid w c1 q \ Valid w' c2 q \ Valid p (Cond b c1 c2) q" +by (fastsimp simp:Valid_def image_def) + +lemma iter_aux: "! s s'. Sem c s s' --> s : Some ` (I \ b) --> s' : Some ` I ==> + (\s s'. s : Some ` I \ iter n b (Sem c) s s' \ s' : Some ` (I \ -b))"; +apply(unfold image_def) +apply(induct n) + apply clarsimp +apply(simp (no_asm_use)) +apply blast +done + +lemma WhileRule: + "p \ i \ Valid (i \ b) c i \ i \ (-b) \ q \ Valid p (While b i c) q" +apply(simp add:Valid_def) +apply(simp (no_asm) add:image_def) +apply clarify +apply(drule iter_aux) + prefer 2 apply assumption + apply blast +apply blast +done + +lemma AbortRule: "p \ {s. False} \ Valid p Abort q" +by(auto simp:Valid_def) + +use "hoareAbort.ML" + +method_setup vcg = {* + Method.no_args + (Method.SIMPLE_METHOD' HEADGOAL (hoare_tac (K all_tac))) *} + "verification condition generator" + +method_setup vcg_simp = {* + Method.ctxt_args (fn ctxt => + Method.METHOD (fn facts => + hoare_tac (asm_full_simp_tac (Simplifier.get_local_simpset ctxt))1)) *} + "verification condition generator plus simplification" + +end diff -r f5d08c341216 -r 11d7c5a8dbb7 src/HOL/Hoare/ROOT.ML --- a/src/HOL/Hoare/ROOT.ML Tue Mar 11 15:04:24 2003 +0100 +++ b/src/HOL/Hoare/ROOT.ML Tue Mar 11 15:04:24 2003 +0100 @@ -5,5 +5,6 @@ *) time_use_thy "Examples"; +time_use_thy "ExamplesAbort"; time_use_thy "Pointers0"; time_use_thy "Pointer_Examples"; diff -r f5d08c341216 -r 11d7c5a8dbb7 src/HOL/Hoare/Separation.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/Hoare/Separation.thy Tue Mar 11 15:04:24 2003 +0100 @@ -0,0 +1,90 @@ +theory Separation = HoareAbort: + +types heap = "(nat \ nat option)" + + +text{* The semantic definition of a few connectives: *} + +constdefs + R:: "heap \ heap \ heap \ bool" +"R h h1 h2 == dom h1 \ dom h2 = {} \ h = h1 ++ h2" + + star:: "(heap \ bool) \ (heap \ bool) \ (heap \ bool)" +"star P Q == \h. \h1 h2. R h h1 h2 \ P h1 \ Q h2" + + singl:: "heap \ nat \ nat \ bool" +"singl h x y == dom h = {x} & h x = Some y" + +lemma "VARS x y z w h + {star (%h. singl h x y) (%h. singl h z w) h} + SKIP + {x \ z}" +apply vcg +apply(auto simp:star_def R_def singl_def) +done + +text{* To suppress the heap parameter of the connectives, we assume it +is always called H and add/remove it upon parsing/printing. Thus +every pointer program needs to have a program variable H, and +assertions should not contain any locally bound Hs - otherwise they +may bind the implicit H. *} + +text{* Nice input syntax: *} + +syntax + "@singl" :: "nat \ nat \ bool" ("[_ \ _]") + "@star" :: "bool \ bool \ bool" (infixl "**" 60) + +ML{* +fun singl_tr [p,q] = Syntax.const "singl" $ Syntax.free "H" $ p $ q + | singl_tr ts = raise TERM ("singl_tr", ts); +fun star_tr [P,Q] = Syntax.const "star" $ + absfree("H",dummyT,P) $ absfree("H",dummyT,Q) $ Syntax.free "H" + | star_tr ts = raise TERM ("star_tr", ts); +*} + +parse_translation {* [("@singl", singl_tr),("@star", star_tr)] *} + +lemma "VARS H x y z w + {[x\y] ** [z\w]} + SKIP + {x \ z}" +apply vcg +apply(auto simp:star_def R_def singl_def) +done + +text{* Nice output syntax: *} + +ML{* +fun singl_tr' [_,p,q] = Syntax.const "@singl" $ p $ q +fun star_tr' [Abs(_,_,P),Abs(_,_,Q),_] = Syntax.const "@star" $ P $ Q +*} + +print_translation {* [("singl", singl_tr'),("star", star_tr')] *} + +lemma "VARS H x y z w + {[x\y] ** [z\w]} + SKIP + {x \ z}" +apply vcg +apply(auto simp:star_def R_def singl_def) +done + + +consts llist :: "(heap * nat)set" +inductive llist +intros +empty: "(%n. None, 0) : llist" +cons: "\ R h h1 h2; pto h1 p q; (h2,q):llist \ \ (h,p):llist" + +lemma "VARS p q h + {(h,p) : llist} + h := h(q \ p) + {(h,q) : llist}" +apply vcg +apply(rule_tac "h1.0" = "%n. if n=q then Some p else None" in llist.cons) +prefer 3 apply assumption +prefer 2 apply(simp add:singl_def dom_def) +apply(simp add:R_def dom_def) + + diff -r f5d08c341216 -r 11d7c5a8dbb7 src/HOL/Hoare/hoare.ML --- a/src/HOL/Hoare/hoare.ML Tue Mar 11 15:04:24 2003 +0100 +++ b/src/HOL/Hoare/hoare.ML Tue Mar 11 15:04:24 2003 +0100 @@ -6,54 +6,11 @@ Derivation of the proof rules and, most importantly, the VCG tactic. *) -(*** The proof rules ***) - -Goalw [thm "Valid_def"] "p <= q ==> Valid p (Basic id) q"; -by (Auto_tac); -qed "SkipRule"; - -Goalw [thm "Valid_def"] "p <= {s. (f s):q} ==> Valid p (Basic f) q"; -by (Auto_tac); -qed "BasicRule"; - -Goalw [thm "Valid_def"] "Valid P c1 Q ==> Valid Q c2 R ==> Valid P (c1;c2) R"; -by (Asm_simp_tac 1); -by (Blast_tac 1); -qed "SeqRule"; - -Goalw [thm "Valid_def"] - "p <= {s. (s:b --> s:w) & (s~:b --> s:w')} \ -\ ==> Valid w c1 q ==> Valid w' c2 q \ -\ ==> Valid p (Cond b c1 c2) q"; -by (Asm_simp_tac 1); -by (Blast_tac 1); -qed "CondRule"; - -Goal "! s s'. Sem c s s' --> s : I Int b --> s' : I ==> \ -\ ! s s'. s : I --> iter n b (Sem c) s s' --> s' : I & s' ~: b"; -by (induct_tac "n" 1); - by (Asm_simp_tac 1); -by (Simp_tac 1); -by (Blast_tac 1); -val lemma = result() RS spec RS spec RS mp RS mp; - -Goalw [thm "Valid_def"] - "p <= i ==> Valid (i Int b) c i ==> i Int (-b) <= q \ -\ ==> Valid p (While b j c) q"; -by (Asm_simp_tac 1); -by (Clarify_tac 1); -by (dtac lemma 1); -by (assume_tac 2); -by (Blast_tac 1); -by (Blast_tac 1); -qed "WhileRule'"; - -Goal - "p <= i ==> Valid (i Int b) c i ==> i Int (-b) <= q \ -\ ==> Valid p (While b i c) q"; -by (rtac WhileRule' 1); -by (ALLGOALS assume_tac); -qed "WhileRule"; +val SkipRule = thm"SkipRule"; +val BasicRule = thm"BasicRule"; +val SeqRule = thm"SeqRule"; +val CondRule = thm"CondRule"; +val WhileRule = thm"WhileRule"; (*** The tactics ***) @@ -191,7 +148,8 @@ (** HoareRuleTac **) -fun WlpTac Mlem tac i = rtac SeqRule i THEN HoareRuleTac Mlem tac false (i+1) +fun WlpTac Mlem tac i = + rtac SeqRule i THEN HoareRuleTac Mlem tac false (i+1) and HoareRuleTac Mlem tac pre_cond i st = st |> (*abstraction over st prevents looping*) ( (WlpTac Mlem tac i THEN HoareRuleTac Mlem tac pre_cond i) diff -r f5d08c341216 -r 11d7c5a8dbb7 src/HOL/Hoare/hoareAbort.ML --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/Hoare/hoareAbort.ML Tue Mar 11 15:04:24 2003 +0100 @@ -0,0 +1,177 @@ +(* Title: HOL/Hoare/Hoare.ML + ID: $Id$ + Author: Leonor Prensa Nieto & Tobias Nipkow + Copyright 1998 TUM + +Derivation of the proof rules and, most importantly, the VCG tactic. +*) + +val SkipRule = thm"SkipRule"; +val BasicRule = thm"BasicRule"; +val AbortRule = thm"AbortRule"; +val SeqRule = thm"SeqRule"; +val CondRule = thm"CondRule"; +val WhileRule = thm"WhileRule"; + +(*** The tactics ***) + +(*****************************************************************************) +(** The function Mset makes the theorem **) +(** "?Mset <= {(x1,...,xn). ?P (x1,...,xn)} ==> ?Mset <= {s. ?P s}", **) +(** where (x1,...,xn) are the variables of the particular program we are **) +(** working on at the moment of the call **) +(*****************************************************************************) + +local open HOLogic in + +(** maps (%x1 ... xn. t) to [x1,...,xn] **) +fun abs2list (Const ("split",_) $ (Abs(x,T,t))) = Free (x, T)::abs2list t + | abs2list (Abs(x,T,t)) = [Free (x, T)] + | abs2list _ = []; + +(** maps {(x1,...,xn). t} to [x1,...,xn] **) +fun mk_vars (Const ("Collect",_) $ T) = abs2list T + | mk_vars _ = []; + +(** abstraction of body over a tuple formed from a list of free variables. +Types are also built **) +fun mk_abstupleC [] body = absfree ("x", unitT, body) + | mk_abstupleC (v::w) body = let val (n,T) = dest_Free v + in if w=[] then absfree (n, T, body) + else let val z = mk_abstupleC w body; + val T2 = case z of Abs(_,T,_) => T + | Const (_, Type (_,[_, Type (_,[T,_])])) $ _ => T; + in Const ("split", (T --> T2 --> boolT) --> mk_prodT (T,T2) --> boolT) + $ absfree (n, T, z) end end; + +(** maps [x1,...,xn] to (x1,...,xn) and types**) +fun mk_bodyC [] = HOLogic.unit + | mk_bodyC (x::xs) = if xs=[] then x + else let val (n, T) = dest_Free x ; + val z = mk_bodyC xs; + val T2 = case z of Free(_, T) => T + | Const ("Pair", Type ("fun", [_, Type + ("fun", [_, T])])) $ _ $ _ => T; + in Const ("Pair", [T, T2] ---> mk_prodT (T, T2)) $ x $ z end; + +fun dest_Goal (Const ("Goal", _) $ P) = P; + +(** maps a goal of the form: + 1. [| P |] ==> VARS x1 ... xn {._.} _ {._.} or to [x1,...,xn]**) +fun get_vars thm = let val c = dest_Goal (concl_of (thm)); + val d = Logic.strip_assums_concl c; + val Const _ $ pre $ _ $ _ = dest_Trueprop d; + in mk_vars pre end; + + +(** Makes Collect with type **) +fun mk_CollectC trm = let val T as Type ("fun",[t,_]) = fastype_of trm + in Collect_const t $ trm end; + +fun inclt ty = Const ("op <=", [ty,ty] ---> boolT); + +(** Makes "Mset <= t" **) +fun Mset_incl t = let val MsetT = fastype_of t + in mk_Trueprop ((inclt MsetT) $ Free ("Mset", MsetT) $ t) end; + + +fun Mset thm = let val vars = get_vars(thm); + val varsT = fastype_of (mk_bodyC vars); + val big_Collect = mk_CollectC (mk_abstupleC vars + (Free ("P",varsT --> boolT) $ mk_bodyC vars)); + val small_Collect = mk_CollectC (Abs("x",varsT, + Free ("P",varsT --> boolT) $ Bound 0)); + val impl = implies $ (Mset_incl big_Collect) $ + (Mset_incl small_Collect); + in Tactic.prove (Thm.sign_of_thm thm) ["Mset", "P"] [] impl (K (CLASET' blast_tac 1)) end; + +end; + + +(*****************************************************************************) +(** Simplifying: **) +(** Some useful lemmata, lists and simplification tactics to control which **) +(** theorems are used to simplify at each moment, so that the original **) +(** input does not suffer any unexpected transformation **) +(*****************************************************************************) + +Goal "-(Collect b) = {x. ~(b x)}"; +by (Fast_tac 1); +qed "Compl_Collect"; + + +(**Simp_tacs**) + +val before_set2pred_simp_tac = + (simp_tac (HOL_basic_ss addsimps [Collect_conj_eq RS sym,Compl_Collect])); + +val split_simp_tac = (simp_tac (HOL_basic_ss addsimps [split_conv])); + +(*****************************************************************************) +(** set2pred transforms sets inclusion into predicates implication, **) +(** maintaining the original variable names. **) +(** Ex. "{x. x=0} <= {x. x <= 1}" -set2pred-> "x=0 --> x <= 1" **) +(** Subgoals containing intersections (A Int B) or complement sets (-A) **) +(** are first simplified by "before_set2pred_simp_tac", that returns only **) +(** subgoals of the form "{x. P x} <= {x. Q x}", which are easily **) +(** transformed. **) +(** This transformation may solve very easy subgoals due to a ligth **) +(** simplification done by (split_all_tac) **) +(*****************************************************************************) + +fun set2pred i thm = let fun mk_string [] = "" + | mk_string (x::xs) = x^" "^mk_string xs; + val vars=get_vars(thm); + val var_string = mk_string (map (fst o dest_Free) vars); + in ((before_set2pred_simp_tac i) THEN_MAYBE + (EVERY [rtac subsetI i, + rtac CollectI i, + dtac CollectD i, + (TRY(split_all_tac i)) THEN_MAYBE + ((rename_tac var_string i) THEN + (full_simp_tac (HOL_basic_ss addsimps [split_conv]) i)) ])) thm + end; + +(*****************************************************************************) +(** BasicSimpTac is called to simplify all verification conditions. It does **) +(** a light simplification by applying "mem_Collect_eq", then it calls **) +(** MaxSimpTac, which solves subgoals of the form "A <= A", **) +(** and transforms any other into predicates, applying then **) +(** the tactic chosen by the user, which may solve the subgoal completely. **) +(*****************************************************************************) + +fun MaxSimpTac tac = FIRST'[rtac subset_refl, set2pred THEN_MAYBE' tac]; + +fun BasicSimpTac tac = + simp_tac + (HOL_basic_ss addsimps [mem_Collect_eq,split_conv] addsimprocs [record_simproc]) + THEN_MAYBE' MaxSimpTac tac; + +(** HoareRuleTac **) + +fun WlpTac Mlem tac i = + rtac SeqRule i THEN HoareRuleTac Mlem tac false (i+1) +and HoareRuleTac Mlem tac pre_cond i st = st |> + (*abstraction over st prevents looping*) + ( (WlpTac Mlem tac i THEN HoareRuleTac Mlem tac pre_cond i) + ORELSE + (FIRST[rtac SkipRule i, + rtac AbortRule i, + EVERY[rtac BasicRule i, + rtac Mlem i, + split_simp_tac i], + EVERY[rtac CondRule i, + HoareRuleTac Mlem tac false (i+2), + HoareRuleTac Mlem tac false (i+1)], + EVERY[rtac WhileRule i, + BasicSimpTac tac (i+2), + HoareRuleTac Mlem tac true (i+1)] ] + THEN (if pre_cond then (BasicSimpTac tac i) else rtac subset_refl i) )); + + +(** tac:(int -> tactic) is the tactic the user chooses to solve or simplify **) +(** the final verification conditions **) + +fun hoare_tac tac i thm = + let val Mlem = Mset(thm) + in SELECT_GOAL(EVERY[HoareRuleTac Mlem tac true 1]) i thm end;