# HG changeset patch # User wenzelm # Date 1380050865 -7200 # Node ID 11debf826dd6e964e11789cbdd7fb687ba722891 # Parent 65c775430caa83e601d5ed27d9212a9f084c8597# Parent 78afb4c4e6838d56fd5dfbde399a5643f6590d64 merged diff -r 65c775430caa -r 11debf826dd6 Admin/isatest/settings/mac-poly-M4 --- a/Admin/isatest/settings/mac-poly-M4 Tue Sep 24 20:58:27 2013 +0200 +++ b/Admin/isatest/settings/mac-poly-M4 Tue Sep 24 21:27:45 2013 +0200 @@ -6,7 +6,7 @@ ML_SYSTEM="polyml-5.5.1" ML_PLATFORM="x86-darwin" ML_HOME="$POLYML_HOME/$ML_PLATFORM" - ML_OPTIONS="-H 1000 --gcthreads 4" + ML_OPTIONS="-H 500 --gcthreads 4" ISABELLE_HOME_USER=~/isabelle-mac-poly-M4 diff -r 65c775430caa -r 11debf826dd6 Admin/isatest/settings/mac-poly-M8 --- a/Admin/isatest/settings/mac-poly-M8 Tue Sep 24 20:58:27 2013 +0200 +++ b/Admin/isatest/settings/mac-poly-M8 Tue Sep 24 21:27:45 2013 +0200 @@ -6,7 +6,7 @@ ML_SYSTEM="polyml-5.5.1" ML_PLATFORM="x86-darwin" ML_HOME="$POLYML_HOME/$ML_PLATFORM" - ML_OPTIONS="-H 1000 --gcthreads 8" + ML_OPTIONS="-H 500 --gcthreads 8" ISABELLE_HOME_USER=~/isabelle-mac-poly-M8 diff -r 65c775430caa -r 11debf826dd6 NEWS --- a/NEWS Tue Sep 24 20:58:27 2013 +0200 +++ b/NEWS Tue Sep 24 21:27:45 2013 +0200 @@ -57,6 +57,9 @@ *** Prover IDE -- Isabelle/Scala/jEdit *** +* Separate manual "jedit" for Isabelle/jEdit, see isabelle doc or +Documentation panel. + * Improved "Theories" panel: Continuous checking of proof document (visible and required parts) may be controlled explicitly, using check box or shortcut "C+e ENTER". Individual theory nodes may be marked diff -r 65c775430caa -r 11debf826dd6 src/HOL/Multivariate_Analysis/Brouwer_Fixpoint.thy --- a/src/HOL/Multivariate_Analysis/Brouwer_Fixpoint.thy Tue Sep 24 20:58:27 2013 +0200 +++ b/src/HOL/Multivariate_Analysis/Brouwer_Fixpoint.thy Tue Sep 24 21:27:45 2013 +0200 @@ -24,9 +24,10 @@ (** move this **) lemma divide_nonneg_nonneg: + fixes a b :: real assumes "a \ 0" and "b \ 0" - shows "0 \ a / (b::real)" + shows "0 \ a / b" proof (cases "b = 0") case True then show ?thesis by auto @@ -1390,7 +1391,8 @@ fix x xa xb xc y assume as: "x = (\(b, g) x. if x = a then b else g x) xa" - "xb \ UNIV - insert a s0" "xa = (xc, y)" + "xb \ UNIV - insert a s0" + "xa = (xc, y)" "xc \ t" "\x\s0. y x \ t" "\x\UNIV - s0. y x = d" @@ -2220,7 +2222,7 @@ ultimately have *: "?A = {s, insert a3 (s - {a0})}" by blast have "s \ insert a3 (s - {a0})" - using `a3\s` by auto + using `a3 \ s` by auto then have ?thesis unfolding * by auto } @@ -3344,7 +3346,9 @@ moreover guess s using as(1)[unfolded simplex_top_face[OF assms(1) allp,symmetric]] .. then guess a .. ultimately show "\s a. ksimplex p (n + 1) s \ - a \ s \ f = s - {a} \ reduced lab (n + 1) ` f = {0..n} \ ((\j\{1..n + 1}. \x\f. x j = 0) \ (\j\{1..n + 1}. \x\f. x j = p))" (is ?ex) + a \ s \ f = s - {a} \ + reduced lab (n + 1) ` f = {0..n} \ + ((\j\{1..n + 1}. \x\f. x j = 0) \ (\j\{1..n + 1}. \x\f. x j = p))" apply (rule_tac x = s in exI) apply (rule_tac x = a in exI) unfolding complete_face_top[OF *] @@ -3354,7 +3358,8 @@ next fix f assume as: "\s a. ksimplex p (n + 1) s \ - a \ s \ f = s - {a} \ reduced lab (n + 1) ` f = {0..n} \ ((\j\{1..n + 1}. \x\f. x j = 0) \ (\j\{1..n + 1}. \x\f. x j = p))" (is ?ex) + a \ s \ f = s - {a} \ reduced lab (n + 1) ` f = {0..n} \ + ((\j\{1..n + 1}. \x\f. x j = 0) \ (\j\{1..n + 1}. \x\f. x j = p))" then guess s .. then guess a by (elim exE conjE) note sa = this { @@ -3447,7 +3452,7 @@ and "\x. \j\{1..Suc n}. (\j. x j \ p) \ x j = 0 \ lab x j = 0" and "\x. \j\{1..Suc n}. (\j. x j \ p) \ x j = p \ lab x j = 1" and "odd (card {f. ksimplex p n f \ reduced lab n ` f = {0..n}})" - shows "odd (card {s. ksimplex p (Suc n) s \ reduced lab (Suc n) ` s = {0..Suc n}})" + shows "odd (card {s. ksimplex p (Suc n) s \ reduced lab (Suc n) ` s = {0..Suc n}})" using assms unfolding Suc_eq_plus1 by (rule kuhn_induction) @@ -4255,7 +4260,7 @@ lemma interval_bij_bij: "\(i::'a::ordered_euclidean_space)\Basis. a\i < b\i \ u\i < v\i \ - interval_bij (a,b) (u,v) (interval_bij (u,v) (a,b) x) = x" + interval_bij (a, b) (u, v) (interval_bij (u, v) (a, b) x) = x" by (auto simp: interval_bij_def euclidean_eq_iff[where 'a='a]) end diff -r 65c775430caa -r 11debf826dd6 src/HOL/Multivariate_Analysis/Determinants.thy --- a/src/HOL/Multivariate_Analysis/Determinants.thy Tue Sep 24 20:58:27 2013 +0200 +++ b/src/HOL/Multivariate_Analysis/Determinants.thy Tue Sep 24 21:27:45 2013 +0200 @@ -20,20 +20,26 @@ done lemma setprod_add_split: - assumes mn: "(m::nat) <= n + 1" - shows "setprod f {m.. n+p} = setprod f {m .. n} * setprod f {n+1..n+p}" + fixes m n :: nat + assumes mn: "m \ n + 1" + shows "setprod f {m..n+p} = setprod f {m .. n} * setprod f {n+1..n+p}" proof - - let ?A = "{m .. n+p}" - let ?B = "{m .. n}" + let ?A = "{m..n+p}" + let ?B = "{m..n}" let ?C = "{n+1..n+p}" - from mn have un: "?B \ ?C = ?A" by auto - from mn have dj: "?B \ ?C = {}" by auto - have f: "finite ?B" "finite ?C" by simp_all + from mn have un: "?B \ ?C = ?A" + by auto + from mn have dj: "?B \ ?C = {}" + by auto + have f: "finite ?B" "finite ?C" + by simp_all from setprod_Un_disjoint[OF f dj, of f, unfolded un] show ?thesis . qed -lemma setprod_offset: "setprod f {(m::nat) + p .. n + p} = setprod (\i. f (i + p)) {m..n}" +lemma setprod_offset: + fixes m n :: nat + shows "setprod f {m + p .. n + p} = setprod (\i. f (i + p)) {m..n}" apply (rule setprod_reindex_cong[where f="op + p"]) apply (auto simp add: image_iff Bex_def inj_on_def) apply presburger @@ -44,7 +50,9 @@ lemma setprod_singleton: "setprod f {x} = f x" by simp -lemma setprod_singleton_nat_seg: "setprod f {n..n} = f (n::'a::order)" +lemma setprod_singleton_nat_seg: + fixes n :: "'a::order" + shows "setprod f {n..n} = f n" by simp lemma setprod_numseg: @@ -54,8 +62,9 @@ by (auto simp add: atLeastAtMostSuc_conv) lemma setprod_le: + fixes f g :: "'b \ 'a::linordered_idom" assumes fS: "finite S" - and fg: "\x\S. f x \ 0 \ f x \ (g x :: 'a::linordered_idom)" + and fg: "\x\S. f x \ 0 \ f x \ g x" shows "setprod f S \ setprod g S" using fS fg apply (induct S) @@ -65,7 +74,7 @@ apply (auto intro: setprod_nonneg) done - (* FIXME: In Finite_Set there is a useless further assumption *) +(* FIXME: In Finite_Set there is a useless further assumption *) lemma setprod_inversef: "finite A \ setprod (inverse \ f) A = (inverse (setprod f A) :: 'a:: field_inverse_zero)" apply (erule finite_induct) @@ -74,8 +83,9 @@ done lemma setprod_le_1: + fixes f :: "'b \ 'a::linordered_idom" assumes fS: "finite S" - and f: "\x\S. f x \ 0 \ f x \ (1::'a::linordered_idom)" + and f: "\x\S. f x \ 0 \ f x \ 1" shows "setprod f S \ 1" using setprod_le[OF fS f] unfolding setprod_1 . @@ -85,10 +95,10 @@ definition trace :: "'a::semiring_1^'n^'n \ 'a" where "trace A = setsum (\i. ((A$i)$i)) (UNIV::'n set)" -lemma trace_0: "trace(mat 0) = 0" +lemma trace_0: "trace (mat 0) = 0" by (simp add: trace_def mat_def) -lemma trace_I: "trace(mat 1 :: 'a::semiring_1^'n^'n) = of_nat(CARD('n))" +lemma trace_I: "trace (mat 1 :: 'a::semiring_1^'n^'n) = of_nat(CARD('n))" by (simp add: trace_def mat_def) lemma trace_add: "trace ((A::'a::comm_semiring_1^'n^'n) + B) = trace A + trace B" @@ -97,37 +107,32 @@ lemma trace_sub: "trace ((A::'a::comm_ring_1^'n^'n) - B) = trace A - trace B" by (simp add: trace_def setsum_subtractf) -lemma trace_mul_sym:"trace ((A::'a::comm_semiring_1^'n^'m) ** B) = trace (B**A)" +lemma trace_mul_sym: "trace ((A::'a::comm_semiring_1^'n^'m) ** B) = trace (B**A)" apply (simp add: trace_def matrix_matrix_mult_def) apply (subst setsum_commute) apply (simp add: mult_commute) done -(* ------------------------------------------------------------------------- *) -(* Definition of determinant. *) -(* ------------------------------------------------------------------------- *) +text {* Definition of determinant. *} definition det:: "'a::comm_ring_1^'n^'n \ 'a" where "det A = setsum (\p. of_int (sign p) * setprod (\i. A$i$p i) (UNIV :: 'n set)) {p. p permutes (UNIV :: 'n set)}" -(* ------------------------------------------------------------------------- *) -(* A few general lemmas we need below. *) -(* ------------------------------------------------------------------------- *) +text {* A few general lemmas we need below. *} lemma setprod_permute: assumes p: "p permutes S" - shows "setprod f S = setprod (f o p) S" + shows "setprod f S = setprod (f \ p) S" using assms by (fact setprod.permute) lemma setproduct_permute_nat_interval: - "p permutes {m::nat .. n} ==> setprod f {m..n} = setprod (f o p) {m..n}" + fixes m n :: nat + shows "p permutes {m..n} \ setprod f {m..n} = setprod (f \ p) {m..n}" by (blast intro!: setprod_permute) -(* ------------------------------------------------------------------------- *) -(* Basic determinant properties. *) -(* ------------------------------------------------------------------------- *) +text {* Basic determinant properties. *} lemma det_transpose: "det (transpose A) = det (A::'a::comm_ring_1 ^'n^'n)" proof - @@ -137,15 +142,18 @@ { fix p assume p: "p \ {p. p permutes ?U}" - from p have pU: "p permutes ?U" by blast + from p have pU: "p permutes ?U" + by blast have sth: "sign (inv p) = sign p" by (metis sign_inverse fU p mem_Collect_eq permutation_permutes) from permutes_inj[OF pU] - have pi: "inj_on p ?U" by (blast intro: subset_inj_on) + have pi: "inj_on p ?U" + by (blast intro: subset_inj_on) from permutes_image[OF pU] have "setprod (\i. ?di (transpose A) i (inv p i)) ?U = - setprod (\i. ?di (transpose A) i (inv p i)) (p ` ?U)" by simp - also have "\ = setprod ((\i. ?di (transpose A) i (inv p i)) o p) ?U" + setprod (\i. ?di (transpose A) i (inv p i)) (p ` ?U)" + by simp + also have "\ = setprod ((\i. ?di (transpose A) i (inv p i)) \ p) ?U" unfolding setprod_reindex[OF pi] .. also have "\ = setprod (\i. ?di A i (p i)) ?U" proof - @@ -153,14 +161,16 @@ fix i assume i: "i \ ?U" from i permutes_inv_o[OF pU] permutes_in_image[OF pU] - have "((\i. ?di (transpose A) i (inv p i)) o p) i = ?di A i (p i)" + have "((\i. ?di (transpose A) i (inv p i)) \ p) i = ?di A i (p i)" unfolding transpose_def by (simp add: fun_eq_iff) } - then show "setprod ((\i. ?di (transpose A) i (inv p i)) o p) ?U = - setprod (\i. ?di A i (p i)) ?U" by (auto intro: setprod_cong) + then show "setprod ((\i. ?di (transpose A) i (inv p i)) \ p) ?U = + setprod (\i. ?di A i (p i)) ?U" + by (auto intro: setprod_cong) qed finally have "of_int (sign (inv p)) * (setprod (\i. ?di (transpose A) i (inv p i)) ?U) = - of_int (sign p) * (setprod (\i. ?di A i (p i)) ?U)" using sth by simp + of_int (sign p) * (setprod (\i. ?di A i (p i)) ?U)" + using sth by simp } then show ?thesis unfolding det_def @@ -178,12 +188,14 @@ let ?U = "UNIV:: 'n set" let ?PU = "{p. p permutes ?U}" let ?pp = "\p. of_int (sign p) * setprod (\i. A$i$p i) (UNIV :: 'n set)" - have fU: "finite ?U" by simp + have fU: "finite ?U" + by simp from finite_permutations[OF fU] have fPU: "finite ?PU" . - have id0: "{id} \ ?PU" by (auto simp add: permutes_id) + have id0: "{id} \ ?PU" + by (auto simp add: permutes_id) { fix p - assume p: "p \ ?PU -{id}" + assume p: "p \ ?PU - {id}" from p have pU: "p permutes ?U" and pid: "p \ id" by blast+ from permutes_natset_le[OF pU] pid obtain i where i: "p i > i" @@ -193,7 +205,7 @@ from setprod_zero[OF fU ex] have "?pp p = 0" by simp } - then have p0: "\p \ ?PU -{id}. ?pp p = 0" + then have p0: "\p \ ?PU - {id}. ?pp p = 0" by blast from setsum_mono_zero_cong_left[OF fPU id0 p0] show ?thesis unfolding det_def by (simp add: sign_id) @@ -207,18 +219,22 @@ let ?U = "UNIV:: 'n set" let ?PU = "{p. p permutes ?U}" let ?pp = "(\p. of_int (sign p) * setprod (\i. A$i$p i) (UNIV :: 'n set))" - have fU: "finite ?U" by simp + have fU: "finite ?U" + by simp from finite_permutations[OF fU] have fPU: "finite ?PU" . - have id0: "{id} \ ?PU" by (auto simp add: permutes_id) + have id0: "{id} \ ?PU" + by (auto simp add: permutes_id) { fix p - assume p: "p \ ?PU -{id}" + assume p: "p \ ?PU - {id}" from p have pU: "p permutes ?U" and pid: "p \ id" by blast+ from permutes_natset_ge[OF pU] pid obtain i where i: "p i < i" by (metis not_le) - from ld[OF i] have ex:"\i \ ?U. A$i$p i = 0" by blast - from setprod_zero[OF fU ex] have "?pp p = 0" by simp + from ld[OF i] have ex:"\i \ ?U. A$i$p i = 0" + by blast + from setprod_zero[OF fU ex] have "?pp p = 0" + by simp } then have p0: "\p \ ?PU -{id}. ?pp p = 0" by blast @@ -236,15 +252,22 @@ let ?pp = "\p. of_int (sign p) * setprod (\i. A$i$p i) (UNIV :: 'n set)" have fU: "finite ?U" by simp from finite_permutations[OF fU] have fPU: "finite ?PU" . - have id0: "{id} \ ?PU" by (auto simp add: permutes_id) + have id0: "{id} \ ?PU" + by (auto simp add: permutes_id) { fix p assume p: "p \ ?PU - {id}" - then have "p \ id" by simp - then obtain i where i: "p i \ i" unfolding fun_eq_iff by auto - from ld [OF i [symmetric]] have ex:"\i \ ?U. A$i$p i = 0" by blast - from setprod_zero [OF fU ex] have "?pp p = 0" by simp} - then have p0: "\p \ ?PU - {id}. ?pp p = 0" by blast + then have "p \ id" + by simp + then obtain i where i: "p i \ i" + unfolding fun_eq_iff by auto + from ld [OF i [symmetric]] have ex:"\i \ ?U. A$i$p i = 0" + by blast + from setprod_zero [OF fU ex] have "?pp p = 0" + by simp + } + then have p0: "\p \ ?PU - {id}. ?pp p = 0" + by blast from setsum_mono_zero_cong_left[OF fPU id0 p0] show ?thesis unfolding det_def by (simp add: sign_id) qed @@ -257,18 +280,21 @@ { fix i assume i: "i \ ?U" - have "?f i i = 1" using i by (vector mat_def) + have "?f i i = 1" + using i by (vector mat_def) } then have th: "setprod (\i. ?f i i) ?U = setprod (\x. 1) ?U" by (auto intro: setprod_cong) { fix i j assume i: "i \ ?U" and j: "j \ ?U" and ij: "i \ j" - have "?f i j = 0" using i j ij by (vector mat_def) + have "?f i j = 0" using i j ij + by (vector mat_def) } - then have "det ?A = setprod (\i. ?f i i) ?U" using det_diagonal - by blast - also have "\ = 1" unfolding th setprod_1 .. + then have "det ?A = setprod (\i. ?f i i) ?U" + using det_diagonal by blast + also have "\ = 1" + unfolding th setprod_1 .. finally show ?thesis . qed @@ -278,7 +304,7 @@ lemma det_permute_rows: fixes A :: "'a::comm_ring_1^'n^'n" assumes p: "p permutes (UNIV :: 'n::finite set)" - shows "det(\ i. A$p i :: 'a^'n^'n) = of_int (sign p) * det A" + shows "det (\ i. A$p i :: 'a^'n^'n) = of_int (sign p) * det A" apply (simp add: det_def setsum_right_distrib mult_assoc[symmetric]) apply (subst sum_permutations_compose_right[OF p]) proof (rule setsum_cong2) @@ -286,21 +312,22 @@ let ?PU = "{p. p permutes ?U}" fix q assume qPU: "q \ ?PU" - have fU: "finite ?U" by simp + have fU: "finite ?U" + by simp from qPU have q: "q permutes ?U" by blast from p q have pp: "permutation p" and qp: "permutation q" by (metis fU permutation_permutes)+ from permutes_inv[OF p] have ip: "inv p permutes ?U" . - have "setprod (\i. A$p i$ (q o p) i) ?U = setprod ((\i. A$p i$(q o p) i) o inv p) ?U" + have "setprod (\i. A$p i$ (q \ p) i) ?U = setprod ((\i. A$p i$(q \ p) i) \ inv p) ?U" by (simp only: setprod_permute[OF ip, symmetric]) - also have "\ = setprod (\i. A $ (p o inv p) i $ (q o (p o inv p)) i) ?U" + also have "\ = setprod (\i. A $ (p \ inv p) i $ (q \ (p \ inv p)) i) ?U" by (simp only: o_def) also have "\ = setprod (\i. A$i$q i) ?U" by (simp only: o_def permutes_inverses[OF p]) - finally have thp: "setprod (\i. A$p i$ (q o p) i) ?U = setprod (\i. A$i$q i) ?U" + finally have thp: "setprod (\i. A$p i$ (q \ p) i) ?U = setprod (\i. A$i$q i) ?U" by blast - show "of_int (sign (q o p)) * setprod (\i. A$ p i$ (q o p) i) ?U = + show "of_int (sign (q \ p)) * setprod (\i. A$ p i$ (q \ p) i) ?U = of_int (sign p) * of_int (sign q) * setprod (\i. A$i$q i) ?U" by (simp only: thp sign_compose[OF qp pp] mult_commute of_int_mult) qed @@ -317,7 +344,8 @@ moreover have "?Ap = transpose (\ i. transpose A $ p i)" by (simp add: transpose_def vec_eq_iff) - ultimately show ?thesis by simp + ultimately show ?thesis + by simp qed lemma det_identical_rows: @@ -372,7 +400,7 @@ shows "det((\ i. if i = k then a i + b i else c i)::'a::comm_ring_1^'n^'n) = det((\ i. if i = k then a i else c i)::'a::comm_ring_1^'n^'n) + det((\ i. if i = k then b i else c i)::'a::comm_ring_1^'n^'n)" - unfolding det_def vec_lambda_beta setsum_addf[symmetric] + unfolding det_def vec_lambda_beta setsum_addf[symmetric] proof (rule setsum_cong2) let ?U = "UNIV :: 'n set" let ?pU = "{p. p permutes ?U}" @@ -382,8 +410,10 @@ fix p assume p: "p \ ?pU" let ?Uk = "?U - {k}" - from p have pU: "p permutes ?U" by blast - have kU: "?U = insert k ?Uk" by blast + from p have pU: "p permutes ?U" + by blast + have kU: "?U = insert k ?Uk" + by blast { fix j assume j: "j \ ?Uk" @@ -395,10 +425,11 @@ apply - apply (rule setprod_cong, simp_all)+ done - have th3: "finite ?Uk" "k \ ?Uk" by auto + have th3: "finite ?Uk" "k \ ?Uk" + by auto have "setprod (\i. ?f i $ p i) ?U = setprod (\i. ?f i $ p i) (insert k ?Uk)" unfolding kU[symmetric] .. - also have "\ = ?f k $ p k * setprod (\i. ?f i $ p i) ?Uk" + also have "\ = ?f k $ p k * setprod (\i. ?f i $ p i) ?Uk" apply (rule setprod_insert) apply simp apply blast @@ -409,8 +440,8 @@ by (metis th1 th2) also have "\ = setprod (\i. ?g i $ p i) (insert k ?Uk) + setprod (\i. ?h i $ p i) (insert k ?Uk)" unfolding setprod_insert[OF th3] by simp - finally have "setprod (\i. ?f i $ p i) ?U = - setprod (\i. ?g i $ p i) ?U + setprod (\i. ?h i $ p i) ?U" unfolding kU[symmetric] . + finally have "setprod (\i. ?f i $ p i) ?U = setprod (\i. ?g i $ p i) ?U + setprod (\i. ?h i $ p i) ?U" + unfolding kU[symmetric] . then show "of_int (sign p) * setprod (\i. ?f i $ p i) ?U = of_int (sign p) * setprod (\i. ?g i $ p i) ?U + of_int (sign p) * setprod (\i. ?h i $ p i) ?U" by (simp add: field_simps) @@ -429,19 +460,23 @@ fix p assume p: "p \ ?pU" let ?Uk = "?U - {k}" - from p have pU: "p permutes ?U" by blast - have kU: "?U = insert k ?Uk" by blast + from p have pU: "p permutes ?U" + by blast + have kU: "?U = insert k ?Uk" + by blast { fix j assume j: "j \ ?Uk" - from j have "?f j $ p j = ?g j $ p j" by simp + from j have "?f j $ p j = ?g j $ p j" + by simp } then have th1: "setprod (\i. ?f i $ p i) ?Uk = setprod (\i. ?g i $ p i) ?Uk" apply - apply (rule setprod_cong) apply simp_all done - have th3: "finite ?Uk" "k \ ?Uk" by auto + have th3: "finite ?Uk" "k \ ?Uk" + by auto have "setprod (\i. ?f i $ p i) ?U = setprod (\i. ?f i $ p i) (insert k ?Uk)" unfolding kU[symmetric] .. also have "\ = ?f k $ p k * setprod (\i. ?f i $ p i) ?Uk" @@ -495,7 +530,8 @@ let ?P = "\x. ?d (row i A + x) = det A" { fix k - have "(if k = i then row i A + 0 else row k A) = row k A" by simp + have "(if k = i then row i A + 0 else row k A) = row k A" + by simp } then have P0: "?P 0" apply - @@ -506,9 +542,11 @@ { fix c z y assume zS: "z \ ?S" and Py: "?P y" - from zS obtain j where j: "z = row j A" "i \ j" by blast + from zS obtain j where j: "z = row j A" "i \ j" + by blast let ?w = "row i A + y" - have th0: "row i A + (c*s z + y) = ?w + c*s z" by vector + have th0: "row i A + (c*s z + y) = ?w + c*s z" + by vector have thz: "?d z = 0" apply (rule det_identical_rows[OF j(2)]) using j @@ -528,10 +566,10 @@ done qed -(* ------------------------------------------------------------------------- *) -(* May as well do this, though it's a bit unsatisfactory since it ignores *) -(* exact duplicates by considering the rows/columns as a set. *) -(* ------------------------------------------------------------------------- *) +text {* + May as well do this, though it's a bit unsatisfactory since it ignores + exact duplicates by considering the rows/columns as a set. +*} lemma det_dependent_rows: fixes A:: "real^'n^'n" @@ -571,9 +609,7 @@ shows "det A = 0" by (metis d det_dependent_rows rows_transpose det_transpose) -(* ------------------------------------------------------------------------- *) -(* Multilinearity and the multiplication formula. *) -(* ------------------------------------------------------------------------- *) +text {* Multilinearity and the multiplication formula. *} lemma Cart_lambda_cong: "(\x. f x = g x) \ (vec_lambda f::'a^'n) = (vec_lambda g :: 'a^'n)" by (rule iffD1[OF vec_lambda_unique]) vector @@ -600,8 +636,10 @@ shows "finite {f. (\i \ {1.. (k::nat)}. f i \ S) \ (\i. i \ {1 .. k} \ f i = i)}" proof (induct k) case 0 - have th: "{f. \i. f i = i} = {id}" by auto - show ?case by (auto simp add: th) + have th: "{f. \i. f i = i} = {id}" + by auto + show ?case + by (auto simp add: th) next case (Suc k) let ?f = "\(y::nat,g) i. if i = Suc k then y else g i" @@ -613,15 +651,18 @@ apply auto done with finite_imageI[OF finite_cartesian_product[OF fS Suc.hyps(1)], of ?f] - show ?case by metis + show ?case + by metis qed -lemma eq_id_iff[simp]: "(\x. f x = x) = (f = id)" by auto +lemma eq_id_iff[simp]: "(\x. f x = x) \ f = id" + by auto lemma det_linear_rows_setsum_lemma: - assumes fS: "finite S" and fT: "finite T" - shows "det((\ i. if i \ T then setsum (a i) S else c i):: 'a::comm_ring_1^'n^'n) = + assumes fS: "finite S" + and fT: "finite T" + shows "det ((\ i. if i \ T then setsum (a i) S else c i):: 'a::comm_ring_1^'n^'n) = setsum (\f. det((\ i. if i \ T then a i (f i) else c i)::'a^'n^'n)) {f. (\i \ T. f i \ S) \ (\i. i \ T \ f i = i)}" using fT @@ -629,7 +670,8 @@ case empty have th0: "\x y. (\ i. if i \ {} then x i else y i) = (\ i. y i)" by vector - from empty.prems show ?case unfolding th0 by simp + from empty.prems show ?case + unfolding th0 by simp next case (insert z T a c) let ?F = "\T. {f. (\i \ T. f i \ S) \ (\i. i \ T \ f i = i)}" @@ -671,7 +713,8 @@ qed lemma det_linear_rows_setsum: - assumes fS: "finite (S::'n::finite set)" + fixes S :: "'n::finite set" + assumes fS: "finite S" shows "det (\ i. setsum (a i) S) = setsum (\f. det (\ i. a i (f i) :: 'a::comm_ring_1 ^ 'n^'n)) {f. \i. f i \ S}" proof - @@ -700,7 +743,8 @@ have "setprod (\i. c i * a i $ p i) ?U = setprod c ?U * setprod (\i. a i $ p i) ?U" unfolding setprod_timesf .. then show "?s * (\xa\?U. c xa * a xa $ p xa) = - setprod c ?U * (?s* (\xa\?U. a xa $ p xa))" by (simp add: field_simps) + setprod c ?U * (?s* (\xa\?U. a xa $ p xa))" + by (simp add: field_simps) qed lemma det_mul: @@ -710,19 +754,22 @@ let ?U = "UNIV :: 'n set" let ?F = "{f. (\i\ ?U. f i \ ?U) \ (\i. i \ ?U \ f i = i)}" let ?PU = "{p. p permutes ?U}" - have fU: "finite ?U" by simp - have fF: "finite ?F" by (rule finite) + have fU: "finite ?U" + by simp + have fF: "finite ?F" + by (rule finite) { fix p assume p: "p permutes ?U" have "p \ ?F" unfolding mem_Collect_eq permutes_in_image[OF p] using p[unfolded permutes_def] by simp } - then have PUF: "?PU \ ?F" by blast + then have PUF: "?PU \ ?F" by blast { fix f assume fPU: "f \ ?F - ?PU" - have fUU: "f ` ?U \ ?U" using fPU by auto + have fUU: "f ` ?U \ ?U" + using fPU by auto from fPU have f: "\i \ ?U. f i \ ?U" "\i. i \ ?U \ f i = i" "\(\y. \!x. f x = y)" unfolding permutes_def by auto @@ -733,7 +780,8 @@ then obtain i j where ij: "f i = f j" "i \ j" unfolding inj_on_def by blast from ij - have rth: "row i ?B = row j ?B" by (vector row_def) + have rth: "row i ?B = row j ?B" + by (vector row_def) from det_identical_rows[OF ij(2) rth] have "det (\ i. A$i$f i *s B$f i) = 0" unfolding det_rows_mul by simp @@ -744,48 +792,56 @@ from f fi have fith: "\i j. f i = f j \ i = j" unfolding inj_on_def by metis note fs = fi[unfolded surjective_iff_injective_gen[OF fU fU refl fUU, symmetric]] - { fix y - from fs f have "\x. f x = y" by blast - then obtain x where x: "f x = y" by blast + from fs f have "\x. f x = y" + by blast + then obtain x where x: "f x = y" + by blast { fix z assume z: "f z = y" - from fith x z have "z = x" by metis + from fith x z have "z = x" + by metis } - with x have "\!x. f x = y" by blast + with x have "\!x. f x = y" + by blast } - with f(3) have "det (\ i. A$i$f i *s B$f i) = 0" by blast + with f(3) have "det (\ i. A$i$f i *s B$f i) = 0" + by blast } - ultimately have "det (\ i. A$i$f i *s B$f i) = 0" by blast + ultimately have "det (\ i. A$i$f i *s B$f i) = 0" + by blast } - hence zth: "\ f\ ?F - ?PU. det (\ i. A$i$f i *s B$f i) = 0" + then have zth: "\ f\ ?F - ?PU. det (\ i. A$i$f i *s B$f i) = 0" by simp { fix p assume pU: "p \ ?PU" - from pU have p: "p permutes ?U" by blast + from pU have p: "p permutes ?U" + by blast let ?s = "\p. of_int (sign p)" let ?f = "\q. ?s p * (\i\ ?U. A $ i $ p i) * (?s q * (\i\ ?U. B $ i $ q i))" have "(setsum (\q. ?s q * (\i\ ?U. (\ i. A $ i $ p i *s B $ p i :: 'a^'n^'n) $ i $ q i)) ?PU) = (setsum (\q. ?s p * (\i\ ?U. A $ i $ p i) * (?s q * (\i\ ?U. B $ i $ q i))) ?PU)" unfolding sum_permutations_compose_right[OF permutes_inv[OF p], of ?f] - proof(rule setsum_cong2) + proof (rule setsum_cong2) fix q assume qU: "q \ ?PU" - hence q: "q permutes ?U" by blast + then have q: "q permutes ?U" + by blast from p q have pp: "permutation p" and pq: "permutation q" unfolding permutation_permutes by auto have th00: "of_int (sign p) * of_int (sign p) = (1::'a)" "\a. of_int (sign p) * (of_int (sign p) * a) = a" - unfolding mult_assoc[symmetric] unfolding of_int_mult[symmetric] + unfolding mult_assoc[symmetric] + unfolding of_int_mult[symmetric] by (simp_all add: sign_idempotent) - have ths: "?s q = ?s p * ?s (q o inv p)" + have ths: "?s q = ?s p * ?s (q \ inv p)" using pp pq permutation_inverse[OF pp] sign_inverse[OF pp] by (simp add: th00 mult_ac sign_idempotent sign_compose) - have th001: "setprod (\i. B$i$ q (inv p i)) ?U = setprod ((\i. B$i$ q (inv p i)) o p) ?U" + have th001: "setprod (\i. B$i$ q (inv p i)) ?U = setprod ((\i. B$i$ q (inv p i)) \ p) ?U" by (rule setprod_permute[OF p]) have thp: "setprod (\i. (\ i. A$i$p i *s B$p i :: 'a^'n^'n) $i $ q i) ?U = setprod (\i. A$i$p i) ?U * setprod (\i. B$i$ q (inv p i)) ?U" @@ -795,7 +851,7 @@ apply vector done show "?s q * setprod (\i. (((\ i. A$i$p i *s B$p i) :: 'a^'n^'n)$i$q i)) ?U = - ?s p * (setprod (\i. A$i$p i) ?U) * (?s (q o inv p) * setprod (\i. B$i$(q o inv p) i) ?U)" + ?s p * (setprod (\i. A$i$p i) ?U) * (?s (q \ inv p) * setprod (\i. B$i$(q \ inv p) i) ?U)" using ths thp pp pq permutation_inverse[OF pp] sign_inverse[OF pp] by (simp add: sign_nz th00 field_simps sign_idempotent sign_compose) qed @@ -804,16 +860,15 @@ unfolding det_def setsum_product by (rule setsum_cong2) have "det (A**B) = setsum (\f. det (\ i. A $ i $ f i *s B $ f i)) ?F" - unfolding matrix_mul_setsum_alt det_linear_rows_setsum[OF fU] by simp + unfolding matrix_mul_setsum_alt det_linear_rows_setsum[OF fU] + by simp also have "\ = setsum (\f. det (\ i. A$i$f i *s B$f i)) ?PU" using setsum_mono_zero_cong_left[OF fF PUF zth, symmetric] unfolding det_rows_mul by auto finally show ?thesis unfolding th2 . qed -(* ------------------------------------------------------------------------- *) -(* Relation to invertibility. *) -(* ------------------------------------------------------------------------- *) +text {* Relation to invertibility. *} lemma invertible_left_inverse: fixes A :: "real^'n^'n" @@ -833,18 +888,23 @@ assume "invertible A" then obtain B :: "real ^'n^'n" where B: "A ** B = mat 1" unfolding invertible_righ_inverse by blast - hence "det (A ** B) = det (mat 1 :: real ^'n^'n)" by simp - hence "det A \ 0" by (simp add: det_mul det_I) algebra + then have "det (A ** B) = det (mat 1 :: real ^'n^'n)" + by simp + then have "det A \ 0" + by (simp add: det_mul det_I) algebra } moreover { assume H: "\ invertible A" let ?U = "UNIV :: 'n set" - have fU: "finite ?U" by simp + have fU: "finite ?U" + by simp from H obtain c i where c: "setsum (\i. c i *s row i A) ?U = 0" - and iU: "i \ ?U" and ci: "c i \ 0" + and iU: "i \ ?U" + and ci: "c i \ 0" unfolding invertible_righ_inverse - unfolding matrix_right_invertible_independent_rows by blast + unfolding matrix_right_invertible_independent_rows + by blast have *: "\(a::real^'n) b. a + b = 0 \ -a = b" apply (drule_tac f="op + (- a)" in cong[OF refl]) apply (simp only: ab_left_minus add_assoc[symmetric]) @@ -856,7 +916,9 @@ apply - apply (rule vector_mul_lcancel_imp[OF ci]) apply (auto simp add: field_simps) - unfolding * .. + unfolding * + apply rule + done have thr: "- row i A \ span {row j A| j. j \ i}" unfolding thr0 apply (rule span_setsum) @@ -872,27 +934,31 @@ unfolding det_row_span[OF thr, symmetric] right_minus unfolding det_zero_row[OF thrb] .. } - ultimately show ?thesis by blast + ultimately show ?thesis + by blast qed -(* ------------------------------------------------------------------------- *) -(* Cramer's rule. *) -(* ------------------------------------------------------------------------- *) +text {* Cramer's rule. *} lemma cramer_lemma_transpose: - fixes A:: "real^'n^'n" and x :: "real^'n" + fixes A:: "real^'n^'n" + and x :: "real^'n" shows "det ((\ i. if i = k then setsum (\i. x$i *s row i A) (UNIV::'n set) - else row i A)::real^'n^'n) = x$k * det A" + else row i A)::real^'n^'n) = x$k * det A" (is "?lhs = ?rhs") proof - let ?U = "UNIV :: 'n set" let ?Uk = "?U - {k}" - have U: "?U = insert k ?Uk" by blast - have fUk: "finite ?Uk" by simp - have kUk: "k \ ?Uk" by simp + have U: "?U = insert k ?Uk" + by blast + have fUk: "finite ?Uk" + by simp + have kUk: "k \ ?Uk" + by simp have th00: "\k s. x$k *s row k A + s = (x$k - 1) *s row k A + row k A + s" by (vector field_simps) - have th001: "\f k . (\x. if x = k then f k else f x) = f" by auto + have th001: "\f k . (\x. if x = k then f k else f x) = f" + by auto have "(\ i. row i A) = A" by (vector row_def) then have thd1: "det (\ i. row i A) = det A" by simp @@ -925,7 +991,8 @@ let ?U = "UNIV :: 'n set" have *: "\c. setsum (\i. c i *s row i (transpose A)) ?U = setsum (\i. c i *s column i A) ?U" by (auto simp add: row_transpose intro: setsum_cong2) - show ?thesis unfolding matrix_mult_vsum + show ?thesis + unfolding matrix_mult_vsum unfolding cramer_lemma_transpose[of k x "transpose A", unfolded det_transpose, symmetric] unfolding *[of "\i. x$i"] apply (subst det_transpose[symmetric]) @@ -940,10 +1007,14 @@ shows "A *v x = b \ x = (\ k. det(\ i j. if j=k then b$i else A$i$j) / det A)" proof - from d0 obtain B where B: "A ** B = mat 1" "B ** A = mat 1" - unfolding invertible_det_nz[symmetric] invertible_def by blast - have "(A ** B) *v b = b" by (simp add: B matrix_vector_mul_lid) - then have "A *v (B *v b) = b" by (simp add: matrix_vector_mul_assoc) - then have xe: "\x. A*v x = b" by blast + unfolding invertible_det_nz[symmetric] invertible_def + by blast + have "(A ** B) *v b = b" + by (simp add: B matrix_vector_mul_lid) + then have "A *v (B *v b) = b" + by (simp add: matrix_vector_mul_assoc) + then have xe: "\x. A *v x = b" + by blast { fix x assume x: "A *v x = b" @@ -951,12 +1022,11 @@ unfolding x[symmetric] using d0 by (simp add: vec_eq_iff cramer_lemma field_simps) } - with xe show ?thesis by auto + with xe show ?thesis + by auto qed -(* ------------------------------------------------------------------------- *) -(* Orthogonality of a transformation and matrix. *) -(* ------------------------------------------------------------------------- *) +text {* Orthogonality of a transformation and matrix. *} definition "orthogonal_transformation f \ linear f \ (\v w. f v \ f w = v \ w)" @@ -1015,9 +1085,11 @@ by (simp add: inner_vec_def matrix_matrix_mult_def columnvector_def rowvector_def th0 setsum_delta[OF fU] mat_def axis_def) } - then have "orthogonal_matrix ?mf" unfolding orthogonal_matrix + then have "orthogonal_matrix ?mf" + unfolding orthogonal_matrix by vector - with lf have ?rhs by blast + with lf have ?rhs + by blast } moreover { @@ -1029,7 +1101,8 @@ apply (simp add: dot_matrix_product matrix_mul_lid) done } - ultimately show ?thesis by blast + ultimately show ?thesis + by blast qed lemma det_orthogonal_matrix: @@ -1040,14 +1113,16 @@ have th: "\x::'a. x = 1 \ x = - 1 \ x*x = 1" (is "\x::'a. ?ths x") proof - fix x:: 'a - have th0: "x*x - 1 = (x - 1)*(x + 1)" + have th0: "x * x - 1 = (x - 1) * (x + 1)" by (simp add: field_simps) have th1: "\(x::'a) y. x = - y \ x + y = 0" apply (subst eq_iff_diff_eq_0) apply simp done - have "x * x = 1 \ x*x - 1 = 0" by simp - also have "\ \ x = 1 \ x = - 1" unfolding th0 th1 by simp + have "x * x = 1 \ x * x - 1 = 0" + by simp + also have "\ \ x = 1 \ x = - 1" + unfolding th0 th1 by simp finally show "?ths x" .. qed from oQ have "Q ** transpose Q = mat 1" @@ -1059,9 +1134,8 @@ then show ?thesis unfolding th . qed -(* ------------------------------------------------------------------------- *) -(* Linearity of scaling, and hence isometry, that preserves origin. *) -(* ------------------------------------------------------------------------- *) +text {* Linearity of scaling, and hence isometry, that preserves origin. *} + lemma scaling_linear: fixes f :: "real ^'n \ real ^'n" assumes f0: "f 0 = 0" @@ -1088,9 +1162,7 @@ "f (0:: real^'n) = (0:: real^'n) \ \x y. dist(f x) (f y) = dist x y \ linear f" by (rule scaling_linear[where c=1]) simp_all -(* ------------------------------------------------------------------------- *) -(* Hence another formulation of orthogonal transformation. *) -(* ------------------------------------------------------------------------- *) +text {* Hence another formulation of orthogonal transformation. *} lemma orthogonal_transformation_isometry: "orthogonal_transformation f \ f(0::real^'n) = (0::real^'n) \ (\x y. dist(f x) (f y) = dist x y)" @@ -1108,9 +1180,7 @@ apply (simp add: dist_norm) done -(* ------------------------------------------------------------------------- *) -(* Can extend an isometry from unit sphere. *) -(* ------------------------------------------------------------------------- *) +text {* Can extend an isometry from unit sphere. *} lemma isometry_sphere_extend: fixes f:: "real ^'n \ real ^'n" @@ -1126,7 +1196,7 @@ "x' = norm x *\<^sub>R x0'" "y' = norm y *\<^sub>R y0'" "norm x0 = 1" "norm x0' = 1" "norm y0 = 1" "norm y0' = 1" "norm(x0' - y0') = norm(x0 - y0)" - hence *: "x0 \ y0 = x0' \ y0' + y0' \ x0' - y0 \ x0 " + then have *: "x0 \ y0 = x0' \ y0' + y0' \ x0' - y0 \ x0 " by (simp add: norm_eq norm_eq_1 inner_add inner_diff) have "norm(x' - y') = norm(x - y)" apply (subst H(1)) @@ -1135,7 +1205,8 @@ apply (subst H(4)) using H(5-9) apply (simp add: norm_eq norm_eq_1) - apply (simp add: inner_diff scalar_mult_eq_scaleR) unfolding * + apply (simp add: inner_diff scalar_mult_eq_scaleR) + unfolding * apply (simp add: field_simps) done } @@ -1144,16 +1215,19 @@ { fix x:: "real ^'n" assume nx: "norm x = 1" - have "?g x = f x" using nx by auto + have "?g x = f x" + using nx by auto } then have thfg: "\x. norm x = 1 \ ?g x = f x" by blast - have g0: "?g 0 = 0" by simp + have g0: "?g 0 = 0" + by simp { fix x y :: "real ^'n" { assume "x = 0" "y = 0" - then have "dist (?g x) (?g y) = dist x y" by simp + then have "dist (?g x) (?g y) = dist x y" + by simp } moreover { @@ -1192,7 +1266,8 @@ from z th0[OF th00] have "dist (?g x) (?g y) = dist x y" by (simp add: dist_norm) } - ultimately have "dist (?g x) (?g y) = dist x y" by blast + ultimately have "dist (?g x) (?g y) = dist x y" + by blast } note thd = this show ?thesis @@ -1203,9 +1278,7 @@ done qed -(* ------------------------------------------------------------------------- *) -(* Rotation, reflection, rotoinversion. *) -(* ------------------------------------------------------------------------- *) +text {* Rotation, reflection, rotoinversion. *} definition "rotation_matrix Q \ orthogonal_matrix Q \ det Q = 1" definition "rotoinversion_matrix Q \ orthogonal_matrix Q \ det Q = - 1" @@ -1215,9 +1288,7 @@ shows " orthogonal_matrix Q \ rotation_matrix Q \ rotoinversion_matrix Q" by (metis rotoinversion_matrix_def rotation_matrix_def det_orthogonal_matrix) -(* ------------------------------------------------------------------------- *) -(* Explicit formulas for low dimensions. *) -(* ------------------------------------------------------------------------- *) +text {* Explicit formulas for low dimensions. *} lemma setprod_1: "setprod f {(1::nat)..1} = f 1" by simp @@ -1250,8 +1321,10 @@ A$1$2 * A$2$1 * A$3$3 - A$1$3 * A$2$2 * A$3$1" proof - - have f123: "finite {2::3, 3}" "1 \ {2::3, 3}" by auto - have f23: "finite {3::3}" "2 \ {3::3}" by auto + have f123: "finite {2::3, 3}" "1 \ {2::3, 3}" + by auto + have f23: "finite {3::3}" "2 \ {3::3}" + by auto show ?thesis unfolding det_def UNIV_3 diff -r 65c775430caa -r 11debf826dd6 src/HOL/Multivariate_Analysis/Integration.thy --- a/src/HOL/Multivariate_Analysis/Integration.thy Tue Sep 24 20:58:27 2013 +0200 +++ b/src/HOL/Multivariate_Analysis/Integration.thy Tue Sep 24 21:27:45 2013 +0200 @@ -2479,7 +2479,7 @@ and "(f has_integral k2) i" shows "k1 = k2" proof (rule ccontr) - let ?e = "norm(k1 - k2) / 2" + let ?e = "norm (k1 - k2) / 2" assume as:"k1 \ k2" then have e: "?e > 0" by auto @@ -5082,7 +5082,7 @@ and "\x\s. (f x)\k \ (g x)\k" shows "i\k \ j\k" proof - - have lem:"\a b i (j::'b). \g f::'a \ 'b. (f has_integral i) ({a..b}) \ + have lem: "\a b i j::'b. \g f::'a \ 'b. (f has_integral i) {a..b} \ (g has_integral j) ({a..b}) \ \x\{a..b}. (f x)\k \ (g x)\k \ i\k \ j\k" proof (rule ccontr) case goal1 @@ -7345,7 +7345,8 @@ by auto have same: "(x, k) = (x', k')" apply - - apply (rule ccontr,drule p(5)[OF xk xk']) + apply (rule ccontr) + apply (drule p(5)[OF xk xk']) proof - assume as: "interior k \ interior k' = {}" from nonempty_witness[OF *] guess z . @@ -8037,7 +8038,7 @@ using p(2-3)[OF goal1(1)] unfolding uv by auto have "u \ a" using p(2-3)[OF goal1(1)] unfolding uv subset_eq by auto - moreover assume "u \ a" + moreover assume "\ ?thesis" ultimately have "u > a" by auto then show False using p(2)[OF goal1(1)] unfolding uv by (auto simp add:) @@ -8061,7 +8062,7 @@ using p(2-3)[OF goal1(1)] unfolding uv by auto have "v \ b" using p(2-3)[OF goal1(1)] unfolding uv subset_eq by auto - moreover assume "v \ b" + moreover assume "\ ?thesis" ultimately have "v < b" by auto then show False using p(2)[OF goal1(1)] unfolding uv by (auto simp add:) @@ -8098,7 +8099,7 @@ apply auto done { assume "x \ k" then show "x \ k'" unfolding * . } - { assume "x \ k'" then show "x\k" unfolding * . } + { assume "x \ k'" then show "x \ k" unfolding * . } qed show "\x y. x \ ?B b \ y \ ?B b \ x = y" apply rule @@ -8473,7 +8474,7 @@ unfolding subset_eq apply (erule_tac x="c + ((k + w)/2)" in ballE) unfolding d_def - using `k>0` `w>0` + using `k > 0` `w > 0` apply (auto simp add: field_simps not_le not_less dist_real_def) done ultimately show ?thesis using `t < c` @@ -11788,7 +11789,7 @@ case goal2 have "\y\setsum (\k. norm (integral k f)) ` {d. d division_of \d}. \ y \ i - e" proof (rule ccontr) - case goal1 + assume "\ ?thesis" then have "i \ i - e" apply - apply (rule isLub_le_isUb[OF i]) @@ -12451,7 +12452,7 @@ have "\y\?S. \ y \ i + r" proof(rule ccontr) - case goal1 + assume "\ ?thesis" then have "i \ i + r" apply - apply (rule isGlb_le_isLb[OF i]) @@ -12554,7 +12555,7 @@ have "\y\?S. \ y \ i - r" proof (rule ccontr) - case goal1 + assume "\ ?thesis" then have "i \ i - r" apply - apply (rule isLub_le_isUb[OF i]) diff -r 65c775430caa -r 11debf826dd6 src/HOL/Multivariate_Analysis/Linear_Algebra.thy --- a/src/HOL/Multivariate_Analysis/Linear_Algebra.thy Tue Sep 24 20:58:27 2013 +0200 +++ b/src/HOL/Multivariate_Analysis/Linear_Algebra.thy Tue Sep 24 21:27:45 2013 +0200 @@ -165,7 +165,7 @@ lemma norm_triangle_half_l: assumes "norm (x - y) < e / 2" - and "norm (x' - (y)) < e / 2" + and "norm (x' - y) < e / 2" shows "norm (x - x') < e" using dist_triangle_half_l[OF assms[unfolded dist_norm[symmetric]]] unfolding dist_norm[symmetric] . @@ -227,17 +227,17 @@ context real_inner begin -definition "orthogonal x y \ (x \ y = 0)" +definition "orthogonal x y \ x \ y = 0" lemma orthogonal_clauses: "orthogonal a 0" "orthogonal a x \ orthogonal a (c *\<^sub>R x)" - "orthogonal a x \ orthogonal a (-x)" + "orthogonal a x \ orthogonal a (- x)" "orthogonal a x \ orthogonal a y \ orthogonal a (x + y)" "orthogonal a x \ orthogonal a y \ orthogonal a (x - y)" "orthogonal 0 a" "orthogonal x a \ orthogonal (c *\<^sub>R x) a" - "orthogonal x a \ orthogonal (-x) a" + "orthogonal x a \ orthogonal (- x) a" "orthogonal x a \ orthogonal y a \ orthogonal (x + y) a" "orthogonal x a \ orthogonal y a \ orthogonal (x - y) a" unfolding orthogonal_def inner_add inner_diff by auto diff -r 65c775430caa -r 11debf826dd6 src/Pure/GUI/color_value.scala --- a/src/Pure/GUI/color_value.scala Tue Sep 24 20:58:27 2013 +0200 +++ b/src/Pure/GUI/color_value.scala Tue Sep 24 21:27:45 2013 +0200 @@ -1,4 +1,5 @@ /* Title: Pure/GUI/color_value.scala + Module: PIDE-GUI Author: Makarius Cached color values. diff -r 65c775430caa -r 11debf826dd6 src/Pure/GUI/gui.scala --- a/src/Pure/GUI/gui.scala Tue Sep 24 20:58:27 2013 +0200 +++ b/src/Pure/GUI/gui.scala Tue Sep 24 21:27:45 2013 +0200 @@ -1,4 +1,5 @@ /* Title: Pure/GUI/gui.scala + Module: PIDE-GUI Author: Makarius Basic GUI tools (for AWT/Swing). @@ -22,18 +23,19 @@ def get_laf(): String = { - def laf(name: String): Option[String] = - UIManager.getInstalledLookAndFeels().find(_.getName == name).map(_.getClassName) - if (Platform.is_windows || Platform.is_macos) UIManager.getSystemLookAndFeelClassName() else - laf("Nimbus") orElse laf("GTK+") getOrElse - UIManager.getCrossPlatformLookAndFeelClassName() + UIManager.getInstalledLookAndFeels().find(_.getName == "Nimbus").map(_.getClassName) + .getOrElse(UIManager.getCrossPlatformLookAndFeelClassName()) } def init_laf(): Unit = UIManager.setLookAndFeel(get_laf()) + def is_macos_laf(): Boolean = + Platform.is_macos && + UIManager.getSystemLookAndFeelClassName() == UIManager.getLookAndFeel.getClass.getName + /* simple dialogs */ diff -r 65c775430caa -r 11debf826dd6 src/Pure/GUI/gui_setup.scala --- a/src/Pure/GUI/gui_setup.scala Tue Sep 24 20:58:27 2013 +0200 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,71 +0,0 @@ -/* Title: Pure/GUI/gui_setup.scala - Author: Makarius - -GUI for basic system setup. -*/ - -package isabelle - -import java.lang.System - -import scala.swing.{ScrollPane, Button, FlowPanel, - BorderPanel, MainFrame, TextArea, SwingApplication} -import scala.swing.event.ButtonClicked - - -object GUI_Setup extends SwingApplication -{ - def startup(args: Array[String]) = - { - GUI.init_laf() - top.pack() - top.visible = true - } - - def top = new MainFrame { - iconImage = GUI.isabelle_image() - - title = "Isabelle setup" - - // components - val text = new TextArea { - editable = false - columns = 80 - rows = 20 - } - val ok = new Button { text = "OK" } - val ok_panel = new FlowPanel(FlowPanel.Alignment.Center)(ok) - - val panel = new BorderPanel - panel.layout(new ScrollPane(text)) = BorderPanel.Position.Center - panel.layout(ok_panel) = BorderPanel.Position.South - contents = panel - - // values - text.append("JVM name: " + Platform.jvm_name + "\n") - text.append("JVM platform: " + Platform.jvm_platform + "\n") - text.append("JVM home: " + java.lang.System.getProperty("java.home", "") + "\n") - try { - Isabelle_System.init() - if (Platform.is_windows) - text.append("Cygwin root: " + Isabelle_System.get_cygwin_root() + "\n") - text.append("ML platform: " + Isabelle_System.getenv("ML_PLATFORM") + "\n") - text.append("Isabelle platform: " + Isabelle_System.getenv("ISABELLE_PLATFORM") + "\n") - val platform64 = Isabelle_System.getenv("ISABELLE_PLATFORM64") - if (platform64 != "") text.append("Isabelle platform (64 bit): " + platform64 + "\n") - text.append("Isabelle home: " + Isabelle_System.getenv("ISABELLE_HOME") + "\n") - val isabelle_home_windows = Isabelle_System.getenv("ISABELLE_HOME_WINDOWS") - if (isabelle_home_windows != "") - text.append("Isabelle home (Windows): " + isabelle_home_windows + "\n") - text.append("Isabelle JDK home: " + Isabelle_System.getenv("ISABELLE_JDK_HOME") + "\n") - } - catch { case ERROR(msg) => text.append(msg + "\n") } - - // reactions - listenTo(ok) - reactions += { - case ButtonClicked(`ok`) => sys.exit(0) - } - } -} - diff -r 65c775430caa -r 11debf826dd6 src/Pure/GUI/html5_panel.scala --- a/src/Pure/GUI/html5_panel.scala Tue Sep 24 20:58:27 2013 +0200 +++ b/src/Pure/GUI/html5_panel.scala Tue Sep 24 21:27:45 2013 +0200 @@ -1,4 +1,5 @@ /* Title: Pure/GUI/html5_panel.scala + Module: PIDE-GUI Author: Makarius HTML5 panel based on Java FX WebView. diff -r 65c775430caa -r 11debf826dd6 src/Pure/GUI/jfx_thread.scala --- a/src/Pure/GUI/jfx_thread.scala Tue Sep 24 20:58:27 2013 +0200 +++ b/src/Pure/GUI/jfx_thread.scala Tue Sep 24 21:27:45 2013 +0200 @@ -1,4 +1,5 @@ /* Title: Pure/GUI/jfx_thread.scala + Module: PIDE-GUI Author: Makarius Evaluation within the Java FX application thread. diff -r 65c775430caa -r 11debf826dd6 src/Pure/GUI/popup.scala --- a/src/Pure/GUI/popup.scala Tue Sep 24 20:58:27 2013 +0200 +++ b/src/Pure/GUI/popup.scala Tue Sep 24 21:27:45 2013 +0200 @@ -1,4 +1,5 @@ /* Title: Pure/GUI/popup.scala + Module: PIDE-GUI Author: Makarius Popup within layered pane. diff -r 65c775430caa -r 11debf826dd6 src/Pure/GUI/swing_thread.scala --- a/src/Pure/GUI/swing_thread.scala Tue Sep 24 20:58:27 2013 +0200 +++ b/src/Pure/GUI/swing_thread.scala Tue Sep 24 21:27:45 2013 +0200 @@ -1,4 +1,5 @@ /* Title: Pure/GUI/swing_thread.scala + Module: PIDE-GUI Author: Makarius Evaluation within the AWT/Swing thread. diff -r 65c775430caa -r 11debf826dd6 src/Pure/GUI/system_dialog.scala --- a/src/Pure/GUI/system_dialog.scala Tue Sep 24 20:58:27 2013 +0200 +++ b/src/Pure/GUI/system_dialog.scala Tue Sep 24 21:27:45 2013 +0200 @@ -1,4 +1,5 @@ /* Title: Pure/GUI/system_dialog.scala + Module: PIDE-GUI Author: Makarius Dialog for system processes, with optional output window. diff -r 65c775430caa -r 11debf826dd6 src/Pure/GUI/wrap_panel.scala --- a/src/Pure/GUI/wrap_panel.scala Tue Sep 24 20:58:27 2013 +0200 +++ b/src/Pure/GUI/wrap_panel.scala Tue Sep 24 21:27:45 2013 +0200 @@ -1,4 +1,5 @@ /* Title: Pure/GUI/wrap_panel.scala + Module: PIDE-GUI Author: Makarius Panel with improved FlowLayout for wrapping of components over diff -r 65c775430caa -r 11debf826dd6 src/Pure/PIDE/editor.scala --- a/src/Pure/PIDE/editor.scala Tue Sep 24 20:58:27 2013 +0200 +++ b/src/Pure/PIDE/editor.scala Tue Sep 24 21:27:45 2013 +0200 @@ -15,7 +15,7 @@ def current_node(context: Context): Option[Document.Node.Name] def current_node_snapshot(context: Context): Option[Document.Snapshot] def node_snapshot(name: Document.Node.Name): Document.Snapshot - def current_command(context: Context, snapshot: Document.Snapshot): Option[(Command, Text.Offset)] + def current_command(context: Context, snapshot: Document.Snapshot): Option[Command] def node_overlays(name: Document.Node.Name): Document.Node.Overlays def insert_overlay(command: Command, fn: String, args: List[String]): Unit diff -r 65c775430caa -r 11debf826dd6 src/Pure/PIDE/query_operation.scala --- a/src/Pure/PIDE/query_operation.scala Tue Sep 24 20:58:27 2013 +0200 +++ b/src/Pure/PIDE/query_operation.scala Tue Sep 24 21:27:45 2013 +0200 @@ -153,7 +153,7 @@ reset_state() consume_output(Document.Snapshot.init, Command.Results.empty, Nil) editor.current_command(editor_context, snapshot) match { - case Some((command, _)) => + case Some(command) => current_location = Some(command) current_query = query current_status = Query_Operation.Status.WAITING @@ -198,7 +198,9 @@ } } - def activate() { editor.session.commands_changed += main_actor } + def activate() { + editor.session.commands_changed += main_actor + } def deactivate() { editor.session.commands_changed -= main_actor diff -r 65c775430caa -r 11debf826dd6 src/Pure/Thy/thy_syntax.ML --- a/src/Pure/Thy/thy_syntax.ML Tue Sep 24 20:58:27 2013 +0200 +++ b/src/Pure/Thy/thy_syntax.ML Tue Sep 24 21:27:45 2013 +0200 @@ -123,14 +123,21 @@ else if forall Token.is_improper toks then Span (Ignored, toks) else Span (Malformed, toks); -fun flush (result, span) = if null span then (result, span) else (rev span :: result, []); +fun flush (result, span, improper) = + result + |> not (null span) ? cons (rev span) + |> not (null improper) ? cons (rev improper); + +fun parse tok (result, span, improper) = + if Token.is_command tok then (flush (result, span, improper), [tok], []) + else if Token.is_improper tok then (result, span, tok :: improper) + else (result, tok :: (improper @ span), []); in fun parse_spans toks = - fold (fn tok => Token.is_command tok ? flush #> apsnd (cons tok)) toks ([], []) - |> flush - |> #1 |> rev |> map make_span; + fold parse toks ([], [], []) + |> flush |> rev |> map make_span; end; diff -r 65c775430caa -r 11debf826dd6 src/Pure/Thy/thy_syntax.scala --- a/src/Pure/Thy/thy_syntax.scala Tue Sep 24 20:58:27 2013 +0200 +++ b/src/Pure/Thy/thy_syntax.scala Tue Sep 24 21:27:45 2013 +0200 @@ -81,10 +81,20 @@ { val result = new mutable.ListBuffer[List[Token]] val span = new mutable.ListBuffer[Token] + val improper = new mutable.ListBuffer[Token] - def flush() { if (!span.isEmpty) { result += span.toList; span.clear } } - for (tok <- toks) { if (tok.is_command) flush(); span += tok } + def flush() + { + if (!span.isEmpty) { result += span.toList; span.clear } + if (!improper.isEmpty) { result += improper.toList; improper.clear } + } + for (tok <- toks) { + if (tok.is_command) { flush(); span += tok } + else if (tok.is_improper) improper += tok + else { span ++= improper; improper.clear; span += tok } + } flush() + result.toList } diff -r 65c775430caa -r 11debf826dd6 src/Pure/build-jars --- a/src/Pure/build-jars Tue Sep 24 20:58:27 2013 +0200 +++ b/src/Pure/build-jars Tue Sep 24 21:27:45 2013 +0200 @@ -31,7 +31,6 @@ General/xz_file.scala GUI/color_value.scala GUI/gui.scala - GUI/gui_setup.scala GUI/html5_panel.scala GUI/jfx_thread.scala GUI/popup.scala @@ -222,7 +221,7 @@ cp "$ISABELLE_HOME/lib/logo/isabelle.gif" isabelle/. - isabelle_jdk jar cfe "$(jvmpath "$TARGET")" isabelle.GUI_Setup META-INF isabelle || \ + isabelle_jdk jar cfe "$(jvmpath "$TARGET")" isabelle.Main META-INF isabelle || \ fail "Failed to produce $TARGET" cp "$SCALA_HOME/lib/scala-compiler.jar" \ diff -r 65c775430caa -r 11debf826dd6 src/Tools/jEdit/src/completion_popup.scala --- a/src/Tools/jEdit/src/completion_popup.scala Tue Sep 24 20:58:27 2013 +0200 +++ b/src/Tools/jEdit/src/completion_popup.scala Tue Sep 24 21:27:45 2013 +0200 @@ -13,6 +13,7 @@ import java.awt.event.{KeyEvent, MouseEvent, MouseAdapter, FocusAdapter, FocusEvent} import javax.swing.{JPanel, JComponent, JLayeredPane, SwingUtilities} import javax.swing.border.LineBorder +import javax.swing.text.DefaultCaret import scala.swing.{ListView, ScrollPane} import scala.swing.event.MouseClicked @@ -221,6 +222,8 @@ { text_field => + // see https://forums.oracle.com/thread/1361677 + if (GUI.is_macos_laf) text_field.setCaret(new DefaultCaret) private var completion_popup: Option[Completion_Popup] = None @@ -278,10 +281,8 @@ val fm = text_field.getFontMetrics(text_field.getFont) val loc = SwingUtilities.convertPoint(text_field, fm.stringWidth(text), fm.getHeight, layered) - val font = - text_field.getFont.deriveFont(Rendering.font_size("jedit_popup_font_scale")) - val completion = new Completion_Popup(layered, loc, font, result.items) + val completion = new Completion_Popup(layered, loc, text_field.getFont, result.items) { override def complete(item: Completion.Item) { PIDE.completion_history.update(item) diff -r 65c775430caa -r 11debf826dd6 src/Tools/jEdit/src/isabelle.scala --- a/src/Tools/jEdit/src/isabelle.scala Tue Sep 24 20:58:27 2013 +0200 +++ b/src/Tools/jEdit/src/isabelle.scala Tue Sep 24 21:27:45 2013 +0200 @@ -187,13 +187,7 @@ JEdit_Lib.buffer_edit(buffer) { val range = command.proper_range + start if (padding) { - val pad = - JEdit_Lib.try_get_text(buffer, Text.Range(range.length - 1, range.length)) - match { - case None => "" - case Some(s) => if (Symbol.is_blank(s)) "" else " " - } - buffer.insert(start + range.length, pad + s) + buffer.insert(start + range.length, "\n" + s) } else { buffer.remove(start, range.length) diff -r 65c775430caa -r 11debf826dd6 src/Tools/jEdit/src/jedit_editor.scala --- a/src/Tools/jEdit/src/jedit_editor.scala Tue Sep 24 20:58:27 2013 +0200 +++ b/src/Tools/jEdit/src/jedit_editor.scala Tue Sep 24 21:27:45 2013 +0200 @@ -62,8 +62,7 @@ } } - override def current_command(view: View, snapshot: Document.Snapshot) - : Option[(Command, Text.Offset)] = + override def current_command(view: View, snapshot: Document.Snapshot): Option[Command] = { Swing_Thread.require() @@ -73,8 +72,16 @@ PIDE.document_view(text_area) match { case Some(doc_view) => val node = snapshot.version.nodes(doc_view.model.node_name) - val caret_commands = node.command_range(text_area.getCaretPosition) - if (caret_commands.hasNext) Some(caret_commands.next) else None + val caret = text_area.getCaretPosition + if (caret < text_area.getBuffer.getLength) { + val caret_commands = node.command_range(caret) + if (caret_commands.hasNext) { + val (cmd0, _) = caret_commands.next + node.commands.reverse.iterator(cmd0).find(cmd => !cmd.is_ignored) + } + else None + } + else node.commands.reverse.iterator.find(cmd => !cmd.is_ignored) case None => None } } diff -r 65c775430caa -r 11debf826dd6 src/Tools/jEdit/src/output_dockable.scala --- a/src/Tools/jEdit/src/output_dockable.scala Tue Sep 24 20:58:27 2013 +0200 +++ b/src/Tools/jEdit/src/output_dockable.scala Tue Sep 24 21:27:45 2013 +0200 @@ -55,7 +55,7 @@ case Some(snapshot) => if (follow && !snapshot.is_outdated) { PIDE.editor.current_command(view, snapshot) match { - case Some((cmd, _)) => + case Some(cmd) => (snapshot, snapshot.state.command_state(snapshot.version, cmd)) case None => (Document.Snapshot.init, Command.empty.init_state) diff -r 65c775430caa -r 11debf826dd6 src/Tools/jEdit/src/sledgehammer_dockable.scala --- a/src/Tools/jEdit/src/sledgehammer_dockable.scala Tue Sep 24 20:58:27 2013 +0200 +++ b/src/Tools/jEdit/src/sledgehammer_dockable.scala Tue Sep 24 21:27:45 2013 +0200 @@ -179,5 +179,5 @@ process_indicator.component, apply_query, cancel_query, locate_query, zoom) add(controls.peer, BorderLayout.NORTH) - override def focusOnDefaultComponent { apply_query.peer.requestFocus } + override def focusOnDefaultComponent { provers.requestFocus } } diff -r 65c775430caa -r 11debf826dd6 src/Tools/try.ML --- a/src/Tools/try.ML Tue Sep 24 20:58:27 2013 +0200 +++ b/src/Tools/try.ML Tue Sep 24 21:27:45 2013 +0200 @@ -116,7 +116,7 @@ (* asynchronous print function (PIDE) *) fun print_function ((name, (weight, auto, tool)): tool) = - Command.print_function name + Command.print_function ("auto_" ^ name) (fn {command_name, ...} => if Keyword.is_theory_goal command_name andalso Options.default_bool auto then SOME