# HG changeset patch # User nipkow # Date 1575457207 -3600 # Node ID 1249859d23dd76f6ae47aa6bd16568ff9b127fcb # Parent 54a7ad860a765ecbf13b78ca4fe1e7232eb7984d moved lemma diff -r 54a7ad860a76 -r 1249859d23dd src/HOL/Analysis/Convex_Euclidean_Space.thy --- a/src/HOL/Analysis/Convex_Euclidean_Space.thy Tue Dec 03 16:51:53 2019 +0100 +++ b/src/HOL/Analysis/Convex_Euclidean_Space.thy Wed Dec 04 12:00:07 2019 +0100 @@ -455,6 +455,11 @@ shows "closure S \ affine hull S" by (intro closure_minimal hull_subset affine_closed affine_affine_hull) +lemma closed_affine_hull [iff]: + fixes S :: "'n::euclidean_space set" + shows "closed (affine hull S)" + by (metis affine_affine_hull affine_closed) + lemma closure_same_affine_hull [simp]: fixes S :: "'n::euclidean_space set" shows "affine hull (closure S) = affine hull S" diff -r 54a7ad860a76 -r 1249859d23dd src/HOL/Analysis/Starlike.thy --- a/src/HOL/Analysis/Starlike.thy Tue Dec 03 16:51:53 2019 +0100 +++ b/src/HOL/Analysis/Starlike.thy Wed Dec 04 12:00:07 2019 +0100 @@ -1296,11 +1296,6 @@ shows "rel_frontier((\x. a + x) ` S) = (\x. a + x) ` (rel_frontier S)" by (simp add: rel_frontier_def translation_diff rel_interior_translation closure_translation) -lemma closed_affine_hull [iff]: - fixes S :: "'n::euclidean_space set" - shows "closed (affine hull S)" - by (metis affine_affine_hull affine_closed) - lemma rel_frontier_nonempty_interior: fixes S :: "'n::euclidean_space set" shows "interior S \ {} \ rel_frontier S = frontier S"