# HG changeset patch # User ballarin # Date 1046355149 -3600 # Node ID 12b2ffbe543a0b2035d9d305bd2d9b63cf9d677a # Parent 4d50cf8ea3d7fd90475613e123651e3a9811f7ad Change to meta simplifier: congruence rules may now have frees as head of term. diff -r 4d50cf8ea3d7 -r 12b2ffbe543a NEWS --- a/NEWS Wed Feb 26 14:26:18 2003 +0100 +++ b/NEWS Thu Feb 27 15:12:29 2003 +0100 @@ -44,10 +44,11 @@ where n is an integer. Thus you can force termination where previously the simplifier would diverge. + - Accepts free variables as head terms in congruence rules. Useful in Isar. * Pure: New flag for triggering if the overall goal of a proof state should be printed: - PG menu: Isabelle/Isar -> Settigs -> Show Main Goal + PG menu: Isabelle/Isar -> Settings -> Show Main Goal (ML: Proof.show_main_goal). * Pure: You can find all matching introduction rules for subgoal 1, i.e. all diff -r 4d50cf8ea3d7 -r 12b2ffbe543a src/HOL/Algebra/CRing.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/Algebra/CRing.thy Thu Feb 27 15:12:29 2003 +0100 @@ -0,0 +1,278 @@ +(* + Title: The algebraic hierarchy of rings + Id: $Id$ + Author: Clemens Ballarin, started 9 December 1996 + Copyright: Clemens Ballarin +*) + +header {* The algebraic hierarchy of rings as axiomatic classes *} + +theory Ring = Group + +section {* The Algebraic Hierarchy of Rings *} + +subsection {* Basic Definitions *} + +record 'a ring = "'a group" + + zero :: 'a ("\\") + add :: "['a, 'a] => 'a" (infixl "\\" 65) + a_inv :: "'a => 'a" ("\\ _" [81] 80) + +locale cring = abelian_monoid R + + assumes a_abelian_group: "abelian_group (| carrier = carrier R, + mult = add R, one = zero R, m_inv = a_inv R |)" + and m_inv_def: "[| EX y. y \ carrier R & x \ y = \; x \ carrier R |] + ==> inv x = (THE y. y \ carrier R & x \ y = \)" + and l_distr: "[| x \ carrier R; y \ carrier R; z \ carrier R |] + ==> (x \ y) \ z = x \ z \ y \ z" + +ML {* + thm "cring.l_distr" +*} + +(* +locale cring = struct R + + assumes a_group: "abelian_group (| carrier = carrier R, + mult = add R, one = zero R, m_inv = a_inv R |)" + and m_monoid: "abelian_monoid (| carrier = carrier R - {zero R}, + mult = mult R, one = one R |)" + and l_distr: "[| x \ carrier R; y \ carrier R; z \ carrier R |] + ==> (x \ y) \ z = x \ z \ y \ z" + +locale field = struct R + + assumes a_group: "abelian_group (| carrier = carrier R, + mult = add R, one = zero R, m_inv = a_inv R |)" + and m_group: "monoid (| carrier = carrier R - {zero R}, + mult = mult R, one = one R |)" + and l_distr: "[| x \ carrier R; y \ carrier R; z \ carrier R |] + ==> (x \ y) \ z = x \ z \ y \ z" +*) +(* + a_assoc: "(a + b) + c = a + (b + c)" + l_zero: "0 + a = a" + l_neg: "(-a) + a = 0" + a_comm: "a + b = b + a" + + m_assoc: "(a * b) * c = a * (b * c)" + l_one: "1 * a = a" + + l_distr: "(a + b) * c = a * c + b * c" + + m_comm: "a * b = b * a" + + -- {* Definition of derived operations *} + + minus_def: "a - b = a + (-b)" + inverse_def: "inverse a = (if a dvd 1 then THE x. a*x = 1 else 0)" + divide_def: "a / b = a * inverse b" + power_def: "a ^ n = nat_rec 1 (%u b. b * a) n" +*) +subsection {* Basic Facts *} + +lemma (in cring) a_magma [simp, intro]: + "magma (| carrier = carrier R, + mult = add R, one = zero R, m_inv = a_inv R |)" + using a_abelian_group by (simp only: abelian_group_def) + +lemma (in cring) a_l_one [simp, intro]: + "l_one (| carrier = carrier R, + mult = add R, one = zero R, m_inv = a_inv R |)" + using a_abelian_group by (simp only: abelian_group_def) + +lemma (in cring) a_abelian_group_parts [simp, intro]: + "semigroup_axioms (| carrier = carrier R, + mult = add R, one = zero R, m_inv = a_inv R |)" + "group_axioms (| carrier = carrier R, + mult = add R, one = zero R, m_inv = a_inv R |)" + "abelian_semigroup_axioms (| carrier = carrier R, + mult = add R, one = zero R, m_inv = a_inv R |)" + using a_abelian_group by (simp_all only: abelian_group_def) + +lemma (in cring) a_semigroup: + "semigroup (| carrier = carrier R, + mult = add R, one = zero R, m_inv = a_inv R |)" + by (simp add: semigroup_def) + +lemma (in cring) a_group: + "group (| carrier = carrier R, + mult = add R, one = zero R, m_inv = a_inv R |)" + by (simp add: group_def) + +lemma (in cring) a_abelian_semigroup: + "abelian_semigroup (| carrier = carrier R, + mult = add R, one = zero R, m_inv = a_inv R |)" + by (simp add: abelian_semigroup_def) + +lemma (in cring) a_abelian_group: + "abelian_group (| carrier = carrier R, + mult = add R, one = zero R, m_inv = a_inv R |)" + by (simp add: abelian_group_def) + +lemma (in cring) a_assoc: + "[| x \ carrier R; y \ carrier R; z \ carrier R |] + ==> (x \ y) \ z = x \ (y \ z)" + using semigroup.m_assoc [OF a_semigroup] + by simp + +lemma (in cring) l_zero: + "x \ carrier R ==> \ \ x = x" + using l_one.l_one [OF a_l_one] + by simp + +lemma (in cring) l_neg: + "x \ carrier R ==> (\ x) \ x = \" + using group.l_inv [OF a_group] + by simp + +lemma (in cring) a_comm: + "[| x \ carrier R; y \ carrier R |] + ==> x \ y = y \ x" + using abelian_semigroup.m_comm [OF a_abelian_semigroup] + by simp + + + + +qed + + l_zero: "0 + a = a" + l_neg: "(-a) + a = 0" + a_comm: "a + b = b + a" + + m_assoc: "(a * b) * c = a * (b * c)" + l_one: "1 * a = a" + + l_distr: "(a + b) * c = a * c + b * c" + + m_comm: "a * b = b * a" +text {* Normaliser for Commutative Rings *} + +use "order.ML" + +method_setup ring = + {* Method.no_args (Method.SIMPLE_METHOD' HEADGOAL (full_simp_tac ring_ss)) *} + {* computes distributive normal form in rings *} + +subsection {* Rings and the summation operator *} + +(* Basic facts --- move to HOL!!! *) + +lemma natsum_0 [simp]: "setsum f {..(0::nat)} = (f 0::'a::plus_ac0)" +by simp + +lemma natsum_Suc [simp]: + "setsum f {..Suc n} = (f (Suc n) + setsum f {..n}::'a::plus_ac0)" +by (simp add: atMost_Suc) + +lemma natsum_Suc2: + "setsum f {..Suc n} = (setsum (%i. f (Suc i)) {..n} + f 0::'a::plus_ac0)" +proof (induct n) + case 0 show ?case by simp +next + case Suc thus ?case by (simp add: assoc) +qed + +lemma natsum_cong [cong]: + "!!k. [| j = k; !!i::nat. i <= k ==> f i = (g i::'a::plus_ac0) |] ==> + setsum f {..j} = setsum g {..k}" +by (induct j) auto + +lemma natsum_zero [simp]: "setsum (%i. 0) {..n::nat} = (0::'a::plus_ac0)" +by (induct n) simp_all + +lemma natsum_add [simp]: + "!!f::nat=>'a::plus_ac0. + setsum (%i. f i + g i) {..n::nat} = setsum f {..n} + setsum g {..n}" +by (induct n) (simp_all add: plus_ac0) + +(* Facts specific to rings *) + +instance ring < plus_ac0 +proof + fix x y z + show "(x::'a::ring) + y = y + x" by (rule a_comm) + show "((x::'a::ring) + y) + z = x + (y + z)" by (rule a_assoc) + show "0 + (x::'a::ring) = x" by (rule l_zero) +qed + +ML {* + local + val lhss = + [read_cterm (sign_of (the_context ())) + ("?t + ?u::'a::ring", TVar (("'z", 0), [])), + read_cterm (sign_of (the_context ())) + ("?t - ?u::'a::ring", TVar (("'z", 0), [])), + read_cterm (sign_of (the_context ())) + ("?t * ?u::'a::ring", TVar (("'z", 0), [])), + read_cterm (sign_of (the_context ())) + ("- ?t::'a::ring", TVar (("'z", 0), [])) + ]; + fun proc sg _ t = + let val rew = Tactic.prove sg [] [] + (HOLogic.mk_Trueprop + (HOLogic.mk_eq (t, Var (("x", Term.maxidx_of_term t + 1), fastype_of t)))) + (fn _ => simp_tac ring_ss 1) + |> mk_meta_eq; + val (t', u) = Logic.dest_equals (Thm.prop_of rew); + in if t' aconv u + then None + else Some rew + end; + in + val ring_simproc = mk_simproc "ring" lhss proc; + end; +*} + +ML_setup {* Addsimprocs [ring_simproc] *} + +lemma natsum_ldistr: + "!!a::'a::ring. setsum f {..n::nat} * a = setsum (%i. f i * a) {..n}" +by (induct n) simp_all + +lemma natsum_rdistr: + "!!a::'a::ring. a * setsum f {..n::nat} = setsum (%i. a * f i) {..n}" +by (induct n) simp_all + +subsection {* Integral Domains *} + +declare one_not_zero [simp] + +lemma zero_not_one [simp]: + "0 ~= (1::'a::domain)" +by (rule not_sym) simp + +lemma integral_iff: (* not by default a simp rule! *) + "(a * b = (0::'a::domain)) = (a = 0 | b = 0)" +proof + assume "a * b = 0" then show "a = 0 | b = 0" by (simp add: integral) +next + assume "a = 0 | b = 0" then show "a * b = 0" by auto +qed + +(* +lemma "(a::'a::ring) - (a - b) = b" apply simp + simproc seems to fail on this example (fixed with new term order) +*) +(* +lemma bug: "(b::'a::ring) - (b - a) = a" by simp + simproc for rings cannot prove "(a::'a::ring) - (a - b) = b" +*) +lemma m_lcancel: + assumes prem: "(a::'a::domain) ~= 0" shows conc: "(a * b = a * c) = (b = c)" +proof + assume eq: "a * b = a * c" + then have "a * (b - c) = 0" by simp + then have "a = 0 | (b - c) = 0" by (simp only: integral_iff) + with prem have "b - c = 0" by auto + then have "b = b - (b - c)" by simp + also have "b - (b - c) = c" by simp + finally show "b = c" . +next + assume "b = c" then show "a * b = a * c" by simp +qed + +lemma m_rcancel: + "(a::'a::domain) ~= 0 ==> (b * a = c * a) = (b = c)" +by (simp add: m_lcancel) + +end diff -r 4d50cf8ea3d7 -r 12b2ffbe543a src/HOL/Algebra/FoldSet.thy --- a/src/HOL/Algebra/FoldSet.thy Wed Feb 26 14:26:18 2003 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,297 +0,0 @@ -(* Title: Summation Operator for Abelian Groups - ID: $Id$ - Author: Clemens Ballarin, started 19 November 2002 - -This file is largely based on HOL/Finite_Set.thy. -*) - -header {* Summation Operator *} - -theory FoldSet = Main: - -(* Instantiation of LC from Finite_Set.thy is not possible, - because here we have explicit typing rules like x : carrier G. - We introduce an explicit argument for the domain D *) - -consts - foldSetD :: "['a set, 'b => 'a => 'a, 'a] => ('b set * 'a) set" - -inductive "foldSetD D f e" - intros - emptyI [intro]: "e : D ==> ({}, e) : foldSetD D f e" - insertI [intro]: "[| x ~: A; f x y : D; (A, y) : foldSetD D f e |] ==> - (insert x A, f x y) : foldSetD D f e" - -inductive_cases empty_foldSetDE [elim!]: "({}, x) : foldSetD D f e" - -constdefs - foldD :: "['a set, 'b => 'a => 'a, 'a, 'b set] => 'a" - "foldD D f e A == THE x. (A, x) : foldSetD D f e" - -lemma foldSetD_closed: - "[| (A, z) : foldSetD D f e ; e : D; !!x y. [| x : A; y : D |] ==> f x y : D - |] ==> z : D"; - by (erule foldSetD.elims) auto - -lemma Diff1_foldSetD: - "[| (A - {x}, y) : foldSetD D f e; x : A; f x y : D |] ==> - (A, f x y) : foldSetD D f e" - apply (erule insert_Diff [THEN subst], rule foldSetD.intros) - apply auto - done - -lemma foldSetD_imp_finite [simp]: "(A, x) : foldSetD D f e ==> finite A" - by (induct set: foldSetD) auto - -lemma finite_imp_foldSetD: - "[| finite A; e : D; !!x y. [| x : A; y : D |] ==> f x y : D |] ==> - EX x. (A, x) : foldSetD D f e" -proof (induct set: Finites) - case empty then show ?case by auto -next - case (insert F x) - then obtain y where y: "(F, y) : foldSetD D f e" by auto - with insert have "y : D" by (auto dest: foldSetD_closed) - with y and insert have "(insert x F, f x y) : foldSetD D f e" - by (intro foldSetD.intros) auto - then show ?case .. -qed - -subsection {* Left-commutative operations *} - -locale LCD = - fixes B :: "'b set" - and D :: "'a set" - and f :: "'b => 'a => 'a" (infixl "\" 70) - assumes left_commute: "[| x : B; y : B; z : D |] ==> x \ (y \ z) = y \ (x \ z)" - and f_closed [simp, intro!]: "!!x y. [| x : B; y : D |] ==> f x y : D" - -lemma (in LCD) foldSetD_closed [dest]: - "(A, z) : foldSetD D f e ==> z : D"; - by (erule foldSetD.elims) auto - -lemma (in LCD) Diff1_foldSetD: - "[| (A - {x}, y) : foldSetD D f e; x : A; A <= B |] ==> - (A, f x y) : foldSetD D f e" - apply (subgoal_tac "x : B") - prefer 2 apply fast - apply (erule insert_Diff [THEN subst], rule foldSetD.intros) - apply auto - done - -lemma (in LCD) foldSetD_imp_finite [simp]: - "(A, x) : foldSetD D f e ==> finite A" - by (induct set: foldSetD) auto - -lemma (in LCD) finite_imp_foldSetD: - "[| finite A; A <= B; e : D |] ==> EX x. (A, x) : foldSetD D f e" -proof (induct set: Finites) - case empty then show ?case by auto -next - case (insert F x) - then obtain y where y: "(F, y) : foldSetD D f e" by auto - with insert have "y : D" by auto - with y and insert have "(insert x F, f x y) : foldSetD D f e" - by (intro foldSetD.intros) auto - then show ?case .. -qed - -lemma (in LCD) foldSetD_determ_aux: - "e : D ==> ALL A x. A <= B & card A < n --> (A, x) : foldSetD D f e --> - (ALL y. (A, y) : foldSetD D f e --> y = x)" - apply (induct n) - apply (auto simp add: less_Suc_eq) - apply (erule foldSetD.cases) - apply blast - apply (erule foldSetD.cases) - apply blast - apply clarify - txt {* force simplification of @{text "card A < card (insert ...)"}. *} - apply (erule rev_mp) - apply (simp add: less_Suc_eq_le) - apply (rule impI) - apply (rename_tac Aa xa ya Ab xb yb, case_tac "xa = xb") - apply (subgoal_tac "Aa = Ab") - prefer 2 apply (blast elim!: equalityE) - apply blast - txt {* case @{prop "xa \ xb"}. *} - apply (subgoal_tac "Aa - {xb} = Ab - {xa} & xb : Aa & xa : Ab") - prefer 2 apply (blast elim!: equalityE) - apply clarify - apply (subgoal_tac "Aa = insert xb Ab - {xa}") - prefer 2 apply blast - apply (subgoal_tac "card Aa <= card Ab") - prefer 2 - apply (rule Suc_le_mono [THEN subst]) - apply (simp add: card_Suc_Diff1) - apply (rule_tac A1 = "Aa - {xb}" in finite_imp_foldSetD [THEN exE]) - apply (blast intro: foldSetD_imp_finite finite_Diff) -(* new subgoal from finite_imp_foldSetD *) - apply best (* blast doesn't seem to solve this *) - apply assumption - apply (frule (1) Diff1_foldSetD) -(* new subgoal from Diff1_foldSetD *) - apply best -(* -apply (best del: foldSetD_closed elim: foldSetD_closed) - apply (rule f_closed) apply assumption apply (rule foldSetD_closed) - prefer 3 apply assumption apply (rule e_closed) - apply (rule f_closed) apply force apply assumption -*) - apply (subgoal_tac "ya = f xb x") - prefer 2 -(* new subgoal to make IH applicable *) - apply (subgoal_tac "Aa <= B") - prefer 2 apply best - apply (blast del: equalityCE) - apply (subgoal_tac "(Ab - {xa}, x) : foldSetD D f e") - prefer 2 apply simp - apply (subgoal_tac "yb = f xa x") - prefer 2 -(* apply (drule_tac x = xa in Diff1_foldSetD) - apply assumption - apply (rule f_closed) apply best apply (rule foldSetD_closed) - prefer 3 apply assumption apply (rule e_closed) - apply (rule f_closed) apply best apply assumption -*) - apply (blast del: equalityCE dest: Diff1_foldSetD) - apply (simp (no_asm_simp)) - apply (rule left_commute) - apply assumption apply best apply best - done - -lemma (in LCD) foldSetD_determ: - "[| (A, x) : foldSetD D f e; (A, y) : foldSetD D f e; e : D; A <= B |] - ==> y = x" - by (blast intro: foldSetD_determ_aux [rule_format]) - -lemma (in LCD) foldD_equality: - "[| (A, y) : foldSetD D f e; e : D; A <= B |] ==> foldD D f e A = y" - by (unfold foldD_def) (blast intro: foldSetD_determ) - -lemma foldD_empty [simp]: - "e : D ==> foldD D f e {} = e" - by (unfold foldD_def) blast - -lemma (in LCD) foldD_insert_aux: - "[| x ~: A; x : B; e : D; A <= B |] ==> - ((insert x A, v) : foldSetD D f e) = - (EX y. (A, y) : foldSetD D f e & v = f x y)" - apply auto - apply (rule_tac A1 = A in finite_imp_foldSetD [THEN exE]) - apply (fastsimp dest: foldSetD_imp_finite) -(* new subgoal by finite_imp_foldSetD *) - apply assumption - apply assumption - apply (blast intro: foldSetD_determ) - done - -lemma (in LCD) foldD_insert: - "[| finite A; x ~: A; x : B; e : D; A <= B |] ==> - foldD D f e (insert x A) = f x (foldD D f e A)" - apply (unfold foldD_def) - apply (simp add: foldD_insert_aux) - apply (rule the_equality) - apply (auto intro: finite_imp_foldSetD - cong add: conj_cong simp add: foldD_def [symmetric] foldD_equality) - done - -lemma (in LCD) foldD_closed [simp]: - "[| finite A; e : D; A <= B |] ==> foldD D f e A : D" -proof (induct set: Finites) - case empty then show ?case by (simp add: foldD_empty) -next - case insert then show ?case by (simp add: foldD_insert) -qed - -lemma (in LCD) foldD_commute: - "[| finite A; x : B; e : D; A <= B |] ==> - f x (foldD D f e A) = foldD D f (f x e) A" - apply (induct set: Finites) - apply simp - apply (auto simp add: left_commute foldD_insert) - done - -lemma Int_mono2: - "[| A <= C; B <= C |] ==> A Int B <= C" - by blast - -lemma (in LCD) foldD_nest_Un_Int: - "[| finite A; finite C; e : D; A <= B; C <= B |] ==> - foldD D f (foldD D f e C) A = foldD D f (foldD D f e (A Int C)) (A Un C)" - apply (induct set: Finites) - apply simp - apply (simp add: foldD_insert foldD_commute Int_insert_left insert_absorb - Int_mono2 Un_subset_iff) - done - -lemma (in LCD) foldD_nest_Un_disjoint: - "[| finite A; finite B; A Int B = {}; e : D; A <= B; C <= B |] - ==> foldD D f e (A Un B) = foldD D f (foldD D f e B) A" - by (simp add: foldD_nest_Un_Int) - --- {* Delete rules to do with @{text foldSetD} relation. *} - -declare foldSetD_imp_finite [simp del] - empty_foldSetDE [rule del] - foldSetD.intros [rule del] -declare (in LCD) - foldSetD_closed [rule del] - -subsection {* Commutative monoids *} - -text {* - We enter a more restrictive context, with @{text "f :: 'a => 'a => 'a"} - instead of @{text "'b => 'a => 'a"}. -*} - -locale ACeD = - fixes D :: "'a set" - and f :: "'a => 'a => 'a" (infixl "\" 70) - and e :: 'a - assumes ident [simp]: "x : D ==> x \ e = x" - and commute: "[| x : D; y : D |] ==> x \ y = y \ x" - and assoc: "[| x : D; y : D; z : D |] ==> (x \ y) \ z = x \ (y \ z)" - and e_closed [simp]: "e : D" - and f_closed [simp]: "[| x : D; y : D |] ==> x \ y : D" - -lemma (in ACeD) left_commute: - "[| x : D; y : D; z : D |] ==> x \ (y \ z) = y \ (x \ z)" -proof - - assume D: "x : D" "y : D" "z : D" - then have "x \ (y \ z) = (y \ z) \ x" by (simp add: commute) - also from D have "... = y \ (z \ x)" by (simp add: assoc) - also from D have "z \ x = x \ z" by (simp add: commute) - finally show ?thesis . -qed - -lemmas (in ACeD) AC = assoc commute left_commute - -lemma (in ACeD) left_ident [simp]: "x : D ==> e \ x = x" -proof - - assume D: "x : D" - have "x \ e = x" by (rule ident) - with D show ?thesis by (simp add: commute) -qed - -lemma (in ACeD) foldD_Un_Int: - "[| finite A; finite B; A <= D; B <= D |] ==> - foldD D f e A \ foldD D f e B = - foldD D f e (A Un B) \ foldD D f e (A Int B)" - apply (induct set: Finites) - apply (simp add: left_commute LCD.foldD_closed [OF LCD.intro [of D]]) -(* left_commute is required to show premise of LCD.intro *) - apply (simp add: AC insert_absorb Int_insert_left - LCD.foldD_insert [OF LCD.intro [of D]] - LCD.foldD_closed [OF LCD.intro [of D]] - Int_mono2 Un_subset_iff) - done - -lemma (in ACeD) foldD_Un_disjoint: - "[| finite A; finite B; A Int B = {}; A <= D; B <= D |] ==> - foldD D f e (A Un B) = foldD D f e A \ foldD D f e B" - by (simp add: foldD_Un_Int - left_commute LCD.foldD_closed [OF LCD.intro [of D]] Un_subset_iff) - -end - diff -r 4d50cf8ea3d7 -r 12b2ffbe543a src/HOL/Algebra/Group.thy --- a/src/HOL/Algebra/Group.thy Wed Feb 26 14:26:18 2003 +0100 +++ b/src/HOL/Algebra/Group.thy Thu Feb 27 15:12:29 2003 +0100 @@ -8,7 +8,7 @@ header {* Algebraic Structures up to Abelian Groups *} -theory Group = FuncSet + FoldSet: +theory Group = FuncSet: text {* Definitions follow Jacobson, Basic Algebra I, Freeman, 1985; with @@ -20,6 +20,14 @@ subsection {* Definitions *} +(* The following may be unnecessary. *) +text {* + We write groups additively. This simplifies notation for rings. + All rings have an additive inverse, only fields have a + multiplicative one. This definitions reduces the need for + qualifiers. +*} + record 'a semigroup = carrier :: "'a set" mult :: "['a, 'a] => 'a" (infixl "\\" 70) @@ -401,278 +409,4 @@ locale abelian_group = abelian_monoid + group -subsection {* Products over Finite Sets *} - -locale finite_prod = abelian_monoid + var prod + - defines "prod == (%f A. if finite A - then foldD (carrier G) (op \ o f) \ A - else arbitrary)" - -(* TODO: nice syntax for the summation operator inside the locale - like \\ i\A. f i, probably needs hand-coded translation *) - -ML_setup {* - -Context.>> (fn thy => (simpset_ref_of thy := - simpset_of thy setsubgoaler asm_full_simp_tac; thy)) *} - -lemma (in finite_prod) prod_empty [simp]: - "prod f {} = \" - by (simp add: prod_def) - -ML_setup {* - -Context.>> (fn thy => (simpset_ref_of thy := - simpset_of thy setsubgoaler asm_simp_tac; thy)) *} - -declare funcsetI [intro] - funcset_mem [dest] - -lemma (in finite_prod) prod_insert [simp]: - "[| finite F; a \ F; f \ F -> carrier G; f a \ carrier G |] ==> - prod f (insert a F) = f a \ prod f F" - apply (rule trans) - apply (simp add: prod_def) - apply (rule trans) - apply (rule LCD.foldD_insert [OF LCD.intro [of "insert a F"]]) - apply simp - apply (rule m_lcomm) - apply fast apply fast apply assumption - apply (fastsimp intro: m_closed) - apply simp+ apply fast - apply (auto simp add: prod_def) - done - -lemma (in finite_prod) prod_one: - "finite A ==> prod (%i. \) A = \" -proof (induct set: Finites) - case empty show ?case by simp -next - case (insert A a) - have "(%i. \) \ A -> carrier G" by auto - with insert show ?case by simp -qed - -(* -lemma prod_eq_0_iff [simp]: - "finite F ==> (prod f F = 0) = (ALL a:F. f a = (0::nat))" - by (induct set: Finites) auto - -lemma prod_SucD: "prod f A = Suc n ==> EX a:A. 0 < f a" - apply (case_tac "finite A") - prefer 2 apply (simp add: prod_def) - apply (erule rev_mp) - apply (erule finite_induct) - apply auto - done - -lemma card_eq_prod: "finite A ==> card A = prod (\x. 1) A" -*) -- {* Could allow many @{text "card"} proofs to be simplified. *} -(* - by (induct set: Finites) auto -*) - -lemma (in finite_prod) prod_closed: - fixes A - assumes fin: "finite A" and f: "f \ A -> carrier G" - shows "prod f A \ carrier G" -using fin f -proof induct - case empty show ?case by simp -next - case (insert A a) - then have a: "f a \ carrier G" by fast - from insert have A: "f \ A -> carrier G" by fast - from insert A a show ?case by simp -qed - -lemma funcset_Int_left [simp, intro]: - "[| f \ A -> C; f \ B -> C |] ==> f \ A Int B -> C" - by fast - -lemma funcset_Un_left [iff]: - "(f \ A Un B -> C) = (f \ A -> C & f \ B -> C)" - by fast - -lemma (in finite_prod) prod_Un_Int: - "[| finite A; finite B; g \ A -> carrier G; g \ B -> carrier G |] ==> - prod g (A Un B) \ prod g (A Int B) = prod g A \ prod g B" - -- {* The reversed orientation looks more natural, but LOOPS as a simprule! *} -proof (induct set: Finites) - case empty then show ?case by (simp add: prod_closed) -next - case (insert A a) - then have a: "g a \ carrier G" by fast - from insert have A: "g \ A -> carrier G" by fast - from insert A a show ?case - by (simp add: ac Int_insert_left insert_absorb prod_closed - Int_mono2 Un_subset_iff) -qed - -lemma (in finite_prod) prod_Un_disjoint: - "[| finite A; finite B; A Int B = {}; - g \ A -> carrier G; g \ B -> carrier G |] - ==> prod g (A Un B) = prod g A \ prod g B" - apply (subst prod_Un_Int [symmetric]) - apply (auto simp add: prod_closed) - done - -(* -lemma prod_UN_disjoint: - fixes f :: "'a => 'b::plus_ac0" - shows - "finite I ==> (ALL i:I. finite (A i)) ==> - (ALL i:I. ALL j:I. i \ j --> A i Int A j = {}) ==> - prod f (UNION I A) = prod (\i. prod f (A i)) I" - apply (induct set: Finites) - apply simp - apply atomize - apply (subgoal_tac "ALL i:F. x \ i") - prefer 2 apply blast - apply (subgoal_tac "A x Int UNION F A = {}") - prefer 2 apply blast - apply (simp add: prod_Un_disjoint) - done -*) - -lemma (in finite_prod) prod_addf: - "[| finite A; f \ A -> carrier G; g \ A -> carrier G |] ==> - prod (%x. f x \ g x) A = (prod f A \ prod g A)" -proof (induct set: Finites) - case empty show ?case by simp -next - case (insert A a) then - have fA: "f : A -> carrier G" by fast - from insert have fa: "f a : carrier G" by fast - from insert have gA: "g : A -> carrier G" by fast - from insert have ga: "g a : carrier G" by fast - from insert have fga: "(%x. f x \ g x) a : carrier G" by (simp add: Pi_def) - from insert have fgA: "(%x. f x \ g x) : A -> carrier G" - by (simp add: Pi_def) - show ?case (* check if all simps are really necessary *) - by (simp add: insert fA fa gA ga fgA fga ac prod_closed Int_insert_left insert_absorb Int_mono2 Un_subset_iff) -qed - -(* -lemma prod_Un: "finite A ==> finite B ==> - (prod f (A Un B) :: nat) = prod f A + prod f B - prod f (A Int B)" - -- {* For the natural numbers, we have subtraction. *} - apply (subst prod_Un_Int [symmetric]) - apply auto - done - -lemma prod_diff1: "(prod f (A - {a}) :: nat) = - (if a:A then prod f A - f a else prod f A)" - apply (case_tac "finite A") - prefer 2 apply (simp add: prod_def) - apply (erule finite_induct) - apply (auto simp add: insert_Diff_if) - apply (drule_tac a = a in mk_disjoint_insert) - apply auto - done -*) - -lemma (in finite_prod) prod_cong: - "[| A = B; g : B -> carrier G; - !!i. i : B ==> f i = g i |] ==> prod f A = prod g B" -proof - - assume prems: "A = B" "g : B -> carrier G" - "!!i. i : B ==> f i = g i" - show ?thesis - proof (cases "finite B") - case True - then have "!!A. [| A = B; g : B -> carrier G; - !!i. i : B ==> f i = g i |] ==> prod f A = prod g B" - proof induct - case empty thus ?case by simp - next - case (insert B x) - then have "prod f A = prod f (insert x B)" by simp - also from insert have "... = f x \ prod f B" - proof (intro prod_insert) - show "finite B" . - next - show "x ~: B" . - next - assume "x ~: B" "!!i. i \ insert x B \ f i = g i" - "g \ insert x B \ carrier G" - thus "f : B -> carrier G" by fastsimp - next - assume "x ~: B" "!!i. i \ insert x B \ f i = g i" - "g \ insert x B \ carrier G" - thus "f x \ carrier G" by fastsimp - qed - also from insert have "... = g x \ prod g B" by fastsimp - also from insert have "... = prod g (insert x B)" - by (intro prod_insert [THEN sym]) auto - finally show ?case . - qed - with prems show ?thesis by simp - next - case False with prems show ?thesis by (simp add: prod_def) - qed -qed - -lemma (in finite_prod) prod_cong1 [cong]: - "[| A = B; !!i. i : B ==> f i = g i; - g : B -> carrier G = True |] ==> prod f A = prod g B" - by (rule prod_cong) fast+ - -text {*Usually, if this rule causes a failed congruence proof error, - the reason is that the premise @{text "g : B -> carrier G"} cannot be shown. - Adding @{thm [source] Pi_def} to the simpset is often useful. *} - -declare funcsetI [rule del] - funcset_mem [rule del] - -subsection {* Summation over the integer interval @{term "{..n}"} *} - -text {* - For technical reasons (locales) a new locale where the index set is - restricted to @{term "nat"} is necessary. -*} - -locale finite_prod_nat = finite_prod + - assumes "False ==> prod f (A::nat set) = prod f A" - -lemma (in finite_prod_nat) natSum_0 [simp]: - "f : {0::nat} -> carrier G ==> prod f {..0} = f 0" -by (simp add: Pi_def) - -lemma (in finite_prod_nat) natsum_Suc [simp]: - "f : {..Suc n} -> carrier G ==> - prod f {..Suc n} = (f (Suc n) \ prod f {..n})" -by (simp add: Pi_def atMost_Suc) - -lemma (in finite_prod_nat) natsum_Suc2: - "f : {..Suc n} -> carrier G ==> - prod f {..Suc n} = (prod (%i. f (Suc i)) {..n} \ f 0)" -proof (induct n) - case 0 thus ?case by (simp add: Pi_def) -next - case Suc thus ?case by (simp add: m_assoc Pi_def prod_closed) -qed - -lemma (in finite_prod_nat) natsum_zero [simp]: - "prod (%i. \) {..n::nat} = \" -by (induct n) (simp_all add: Pi_def) - -lemma (in finite_prod_nat) natsum_add [simp]: - "[| f : {..n} -> carrier G; g : {..n} -> carrier G |] ==> - prod (%i. f i \ g i) {..n::nat} = prod f {..n} \ prod g {..n}" -by (induct n) (simp_all add: ac Pi_def prod_closed) - -thm setsum_cong - -ML_setup {* - -Context.>> (fn thy => (simpset_ref_of thy := - simpset_of thy setsubgoaler asm_full_simp_tac; thy)) *} - -lemma "(\i\{..10::nat}. if i<=10 then 0 else 1) = (0::nat)" -apply simp done - -lemma (in finite_prod_nat) "prod (%i. if i<=10 then \ else x) {..10} = \" -apply (simp add: Pi_def) - end diff -r 4d50cf8ea3d7 -r 12b2ffbe543a src/HOL/Algebra/Summation.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/Algebra/Summation.thy Thu Feb 27 15:12:29 2003 +0100 @@ -0,0 +1,584 @@ +(* Title: Summation Operator for Abelian Groups + ID: $Id$ + Author: Clemens Ballarin, started 19 November 2002 + +This file is largely based on HOL/Finite_Set.thy. +*) + +theory FoldSet = Group: + +section {* Summation operator *} + +(* Instantiation of LC from Finite_Set.thy is not possible, + because here we have explicit typing rules like x : carrier G. + We introduce an explicit argument for the domain D *) + +consts + foldSetD :: "['a set, 'b => 'a => 'a, 'a] => ('b set * 'a) set" + +inductive "foldSetD D f e" + intros + emptyI [intro]: "e : D ==> ({}, e) : foldSetD D f e" + insertI [intro]: "[| x ~: A; f x y : D; (A, y) : foldSetD D f e |] ==> + (insert x A, f x y) : foldSetD D f e" + +inductive_cases empty_foldSetDE [elim!]: "({}, x) : foldSetD D f e" + +constdefs + foldD :: "['a set, 'b => 'a => 'a, 'a, 'b set] => 'a" + "foldD D f e A == THE x. (A, x) : foldSetD D f e" + +lemma foldSetD_closed: + "[| (A, z) : foldSetD D f e ; e : D; !!x y. [| x : A; y : D |] ==> f x y : D + |] ==> z : D"; + by (erule foldSetD.elims) auto + +lemma Diff1_foldSetD: + "[| (A - {x}, y) : foldSetD D f e; x : A; f x y : D |] ==> + (A, f x y) : foldSetD D f e" + apply (erule insert_Diff [THEN subst], rule foldSetD.intros) + apply auto + done + +lemma foldSetD_imp_finite [simp]: "(A, x) : foldSetD D f e ==> finite A" + by (induct set: foldSetD) auto + +lemma finite_imp_foldSetD: + "[| finite A; e : D; !!x y. [| x : A; y : D |] ==> f x y : D |] ==> + EX x. (A, x) : foldSetD D f e" +proof (induct set: Finites) + case empty then show ?case by auto +next + case (insert F x) + then obtain y where y: "(F, y) : foldSetD D f e" by auto + with insert have "y : D" by (auto dest: foldSetD_closed) + with y and insert have "(insert x F, f x y) : foldSetD D f e" + by (intro foldSetD.intros) auto + then show ?case .. +qed + +subsection {* Left-commutative operations *} + +locale LCD = + fixes B :: "'b set" + and D :: "'a set" + and f :: "'b => 'a => 'a" (infixl "\" 70) + assumes left_commute: "[| x : B; y : B; z : D |] ==> x \ (y \ z) = y \ (x \ z)" + and f_closed [simp, intro!]: "!!x y. [| x : B; y : D |] ==> f x y : D" + +lemma (in LCD) foldSetD_closed [dest]: + "(A, z) : foldSetD D f e ==> z : D"; + by (erule foldSetD.elims) auto + +lemma (in LCD) Diff1_foldSetD: + "[| (A - {x}, y) : foldSetD D f e; x : A; A <= B |] ==> + (A, f x y) : foldSetD D f e" + apply (subgoal_tac "x : B") + prefer 2 apply fast + apply (erule insert_Diff [THEN subst], rule foldSetD.intros) + apply auto + done + +lemma (in LCD) foldSetD_imp_finite [simp]: + "(A, x) : foldSetD D f e ==> finite A" + by (induct set: foldSetD) auto + +lemma (in LCD) finite_imp_foldSetD: + "[| finite A; A <= B; e : D |] ==> EX x. (A, x) : foldSetD D f e" +proof (induct set: Finites) + case empty then show ?case by auto +next + case (insert F x) + then obtain y where y: "(F, y) : foldSetD D f e" by auto + with insert have "y : D" by auto + with y and insert have "(insert x F, f x y) : foldSetD D f e" + by (intro foldSetD.intros) auto + then show ?case .. +qed + +lemma (in LCD) foldSetD_determ_aux: + "e : D ==> ALL A x. A <= B & card A < n --> (A, x) : foldSetD D f e --> + (ALL y. (A, y) : foldSetD D f e --> y = x)" + apply (induct n) + apply (auto simp add: less_Suc_eq) + apply (erule foldSetD.cases) + apply blast + apply (erule foldSetD.cases) + apply blast + apply clarify + txt {* force simplification of @{text "card A < card (insert ...)"}. *} + apply (erule rev_mp) + apply (simp add: less_Suc_eq_le) + apply (rule impI) + apply (rename_tac Aa xa ya Ab xb yb, case_tac "xa = xb") + apply (subgoal_tac "Aa = Ab") + prefer 2 apply (blast elim!: equalityE) + apply blast + txt {* case @{prop "xa \ xb"}. *} + apply (subgoal_tac "Aa - {xb} = Ab - {xa} & xb : Aa & xa : Ab") + prefer 2 apply (blast elim!: equalityE) + apply clarify + apply (subgoal_tac "Aa = insert xb Ab - {xa}") + prefer 2 apply blast + apply (subgoal_tac "card Aa <= card Ab") + prefer 2 + apply (rule Suc_le_mono [THEN subst]) + apply (simp add: card_Suc_Diff1) + apply (rule_tac A1 = "Aa - {xb}" in finite_imp_foldSetD [THEN exE]) + apply (blast intro: foldSetD_imp_finite finite_Diff) +(* new subgoal from finite_imp_foldSetD *) + apply best (* blast doesn't seem to solve this *) + apply assumption + apply (frule (1) Diff1_foldSetD) +(* new subgoal from Diff1_foldSetD *) + apply best +(* +apply (best del: foldSetD_closed elim: foldSetD_closed) + apply (rule f_closed) apply assumption apply (rule foldSetD_closed) + prefer 3 apply assumption apply (rule e_closed) + apply (rule f_closed) apply force apply assumption +*) + apply (subgoal_tac "ya = f xb x") + prefer 2 +(* new subgoal to make IH applicable *) + apply (subgoal_tac "Aa <= B") + prefer 2 apply best + apply (blast del: equalityCE) + apply (subgoal_tac "(Ab - {xa}, x) : foldSetD D f e") + prefer 2 apply simp + apply (subgoal_tac "yb = f xa x") + prefer 2 +(* apply (drule_tac x = xa in Diff1_foldSetD) + apply assumption + apply (rule f_closed) apply best apply (rule foldSetD_closed) + prefer 3 apply assumption apply (rule e_closed) + apply (rule f_closed) apply best apply assumption +*) + apply (blast del: equalityCE dest: Diff1_foldSetD) + apply (simp (no_asm_simp)) + apply (rule left_commute) + apply assumption apply best apply best + done + +lemma (in LCD) foldSetD_determ: + "[| (A, x) : foldSetD D f e; (A, y) : foldSetD D f e; e : D; A <= B |] + ==> y = x" + by (blast intro: foldSetD_determ_aux [rule_format]) + +lemma (in LCD) foldD_equality: + "[| (A, y) : foldSetD D f e; e : D; A <= B |] ==> foldD D f e A = y" + by (unfold foldD_def) (blast intro: foldSetD_determ) + +lemma foldD_empty [simp]: + "e : D ==> foldD D f e {} = e" + by (unfold foldD_def) blast + +lemma (in LCD) foldD_insert_aux: + "[| x ~: A; x : B; e : D; A <= B |] ==> + ((insert x A, v) : foldSetD D f e) = + (EX y. (A, y) : foldSetD D f e & v = f x y)" + apply auto + apply (rule_tac A1 = A in finite_imp_foldSetD [THEN exE]) + apply (fastsimp dest: foldSetD_imp_finite) +(* new subgoal by finite_imp_foldSetD *) + apply assumption + apply assumption + apply (blast intro: foldSetD_determ) + done + +lemma (in LCD) foldD_insert: + "[| finite A; x ~: A; x : B; e : D; A <= B |] ==> + foldD D f e (insert x A) = f x (foldD D f e A)" + apply (unfold foldD_def) + apply (simp add: foldD_insert_aux) + apply (rule the_equality) + apply (auto intro: finite_imp_foldSetD + cong add: conj_cong simp add: foldD_def [symmetric] foldD_equality) + done + +lemma (in LCD) foldD_closed [simp]: + "[| finite A; e : D; A <= B |] ==> foldD D f e A : D" +proof (induct set: Finites) + case empty then show ?case by (simp add: foldD_empty) +next + case insert then show ?case by (simp add: foldD_insert) +qed + +lemma (in LCD) foldD_commute: + "[| finite A; x : B; e : D; A <= B |] ==> + f x (foldD D f e A) = foldD D f (f x e) A" + apply (induct set: Finites) + apply simp + apply (auto simp add: left_commute foldD_insert) + done + +lemma Int_mono2: + "[| A <= C; B <= C |] ==> A Int B <= C" + by blast + +lemma (in LCD) foldD_nest_Un_Int: + "[| finite A; finite C; e : D; A <= B; C <= B |] ==> + foldD D f (foldD D f e C) A = foldD D f (foldD D f e (A Int C)) (A Un C)" + apply (induct set: Finites) + apply simp + apply (simp add: foldD_insert foldD_commute Int_insert_left insert_absorb + Int_mono2 Un_subset_iff) + done + +lemma (in LCD) foldD_nest_Un_disjoint: + "[| finite A; finite B; A Int B = {}; e : D; A <= B; C <= B |] + ==> foldD D f e (A Un B) = foldD D f (foldD D f e B) A" + by (simp add: foldD_nest_Un_Int) + +-- {* Delete rules to do with @{text foldSetD} relation. *} + +declare foldSetD_imp_finite [simp del] + empty_foldSetDE [rule del] + foldSetD.intros [rule del] +declare (in LCD) + foldSetD_closed [rule del] + +subsection {* Commutative monoids *} + +text {* + We enter a more restrictive context, with @{text "f :: 'a => 'a => 'a"} + instead of @{text "'b => 'a => 'a"}. +*} + +locale ACeD = + fixes D :: "'a set" + and f :: "'a => 'a => 'a" (infixl "\" 70) + and e :: 'a + assumes ident [simp]: "x : D ==> x \ e = x" + and commute: "[| x : D; y : D |] ==> x \ y = y \ x" + and assoc: "[| x : D; y : D; z : D |] ==> (x \ y) \ z = x \ (y \ z)" + and e_closed [simp]: "e : D" + and f_closed [simp]: "[| x : D; y : D |] ==> x \ y : D" + +lemma (in ACeD) left_commute: + "[| x : D; y : D; z : D |] ==> x \ (y \ z) = y \ (x \ z)" +proof - + assume D: "x : D" "y : D" "z : D" + then have "x \ (y \ z) = (y \ z) \ x" by (simp add: commute) + also from D have "... = y \ (z \ x)" by (simp add: assoc) + also from D have "z \ x = x \ z" by (simp add: commute) + finally show ?thesis . +qed + +lemmas (in ACeD) AC = assoc commute left_commute + +lemma (in ACeD) left_ident [simp]: "x : D ==> e \ x = x" +proof - + assume D: "x : D" + have "x \ e = x" by (rule ident) + with D show ?thesis by (simp add: commute) +qed + +lemma (in ACeD) foldD_Un_Int: + "[| finite A; finite B; A <= D; B <= D |] ==> + foldD D f e A \ foldD D f e B = + foldD D f e (A Un B) \ foldD D f e (A Int B)" + apply (induct set: Finites) + apply (simp add: left_commute LCD.foldD_closed [OF LCD.intro [of D]]) +(* left_commute is required to show premise of LCD.intro *) + apply (simp add: AC insert_absorb Int_insert_left + LCD.foldD_insert [OF LCD.intro [of D]] + LCD.foldD_closed [OF LCD.intro [of D]] + Int_mono2 Un_subset_iff) + done + +lemma (in ACeD) foldD_Un_disjoint: + "[| finite A; finite B; A Int B = {}; A <= D; B <= D |] ==> + foldD D f e (A Un B) = foldD D f e A \ foldD D f e B" + by (simp add: foldD_Un_Int + left_commute LCD.foldD_closed [OF LCD.intro [of D]] Un_subset_iff) + +subsection {* A Product Operator for Finite Sets *} + +text {* + Definition of product (or summation, if the monoid is written addivitively) + operator. +*} + +locale finite_prod = abelian_monoid + var prod + + defines "prod == (%f A. if finite A + then foldD (carrier G) (op \ o f) \ A + else arbitrary)" + +(* TODO: nice syntax for the summation operator inside the locale + like \\ i\A. f i, probably needs hand-coded translation *) + +ML_setup {* + +Context.>> (fn thy => (simpset_ref_of thy := + simpset_of thy setsubgoaler asm_full_simp_tac; thy)) *} + +lemma (in finite_prod) prod_empty [simp]: + "prod f {} = \" + by (simp add: prod_def) + +ML_setup {* + +Context.>> (fn thy => (simpset_ref_of thy := + simpset_of thy setsubgoaler asm_simp_tac; thy)) *} + +declare funcsetI [intro] + funcset_mem [dest] + +lemma (in finite_prod) prod_insert [simp]: + "[| finite F; a \ F; f \ F -> carrier G; f a \ carrier G |] ==> + prod f (insert a F) = f a \ prod f F" + apply (rule trans) + apply (simp add: prod_def) + apply (rule trans) + apply (rule LCD.foldD_insert [OF LCD.intro [of "insert a F"]]) + apply simp + apply (rule m_lcomm) + apply fast apply fast apply assumption + apply (fastsimp intro: m_closed) + apply simp+ apply fast + apply (auto simp add: prod_def) + done + +lemma (in finite_prod) prod_one: + "finite A ==> prod (%i. \) A = \" +proof (induct set: Finites) + case empty show ?case by simp +next + case (insert A a) + have "(%i. \) \ A -> carrier G" by auto + with insert show ?case by simp +qed + +(* +lemma prod_eq_0_iff [simp]: + "finite F ==> (prod f F = 0) = (ALL a:F. f a = (0::nat))" + by (induct set: Finites) auto + +lemma prod_SucD: "prod f A = Suc n ==> EX a:A. 0 < f a" + apply (case_tac "finite A") + prefer 2 apply (simp add: prod_def) + apply (erule rev_mp) + apply (erule finite_induct) + apply auto + done + +lemma card_eq_prod: "finite A ==> card A = prod (\x. 1) A" +*) -- {* Could allow many @{text "card"} proofs to be simplified. *} +(* + by (induct set: Finites) auto +*) + +lemma (in finite_prod) prod_closed: + fixes A + assumes fin: "finite A" and f: "f \ A -> carrier G" + shows "prod f A \ carrier G" +using fin f +proof induct + case empty show ?case by simp +next + case (insert A a) + then have a: "f a \ carrier G" by fast + from insert have A: "f \ A -> carrier G" by fast + from insert A a show ?case by simp +qed + +lemma funcset_Int_left [simp, intro]: + "[| f \ A -> C; f \ B -> C |] ==> f \ A Int B -> C" + by fast + +lemma funcset_Un_left [iff]: + "(f \ A Un B -> C) = (f \ A -> C & f \ B -> C)" + by fast + +lemma (in finite_prod) prod_Un_Int: + "[| finite A; finite B; g \ A -> carrier G; g \ B -> carrier G |] ==> + prod g (A Un B) \ prod g (A Int B) = prod g A \ prod g B" + -- {* The reversed orientation looks more natural, but LOOPS as a simprule! *} +proof (induct set: Finites) + case empty then show ?case by (simp add: prod_closed) +next + case (insert A a) + then have a: "g a \ carrier G" by fast + from insert have A: "g \ A -> carrier G" by fast + from insert A a show ?case + by (simp add: ac Int_insert_left insert_absorb prod_closed + Int_mono2 Un_subset_iff) +qed + +lemma (in finite_prod) prod_Un_disjoint: + "[| finite A; finite B; A Int B = {}; + g \ A -> carrier G; g \ B -> carrier G |] + ==> prod g (A Un B) = prod g A \ prod g B" + apply (subst prod_Un_Int [symmetric]) + apply (auto simp add: prod_closed) + done + +(* +lemma prod_UN_disjoint: + fixes f :: "'a => 'b::plus_ac0" + shows + "finite I ==> (ALL i:I. finite (A i)) ==> + (ALL i:I. ALL j:I. i \ j --> A i Int A j = {}) ==> + prod f (UNION I A) = prod (\i. prod f (A i)) I" + apply (induct set: Finites) + apply simp + apply atomize + apply (subgoal_tac "ALL i:F. x \ i") + prefer 2 apply blast + apply (subgoal_tac "A x Int UNION F A = {}") + prefer 2 apply blast + apply (simp add: prod_Un_disjoint) + done +*) + +lemma (in finite_prod) prod_addf: + "[| finite A; f \ A -> carrier G; g \ A -> carrier G |] ==> + prod (%x. f x \ g x) A = (prod f A \ prod g A)" +proof (induct set: Finites) + case empty show ?case by simp +next + case (insert A a) then + have fA: "f : A -> carrier G" by fast + from insert have fa: "f a : carrier G" by fast + from insert have gA: "g : A -> carrier G" by fast + from insert have ga: "g a : carrier G" by fast + from insert have fga: "(%x. f x \ g x) a : carrier G" by (simp add: Pi_def) + from insert have fgA: "(%x. f x \ g x) : A -> carrier G" + by (simp add: Pi_def) + show ?case (* check if all simps are really necessary *) + by (simp add: insert fA fa gA ga fgA fga ac prod_closed Int_insert_left insert_absorb Int_mono2 Un_subset_iff) +qed + +(* +lemma prod_Un: "finite A ==> finite B ==> + (prod f (A Un B) :: nat) = prod f A + prod f B - prod f (A Int B)" + apply (subst prod_Un_Int [symmetric]) + apply auto + done + +lemma prod_diff1: "(prod f (A - {a}) :: nat) = + (if a:A then prod f A - f a else prod f A)" + apply (case_tac "finite A") + prefer 2 apply (simp add: prod_def) + apply (erule finite_induct) + apply (auto simp add: insert_Diff_if) + apply (drule_tac a = a in mk_disjoint_insert) + apply auto + done +*) + +text {* + Congruence rule. The simplifier requires the rule to be in this form. +*} +(* +lemma (in finite_prod) prod_cong [cong]: + "[| A = B; !!i. i \ B ==> f i = g i; + g \ B -> carrier G = True |] ==> prod f A = prod g B" +*) +lemma (in finite_prod) prod_cong: + "[| A = B; g \ B -> carrier G; + !!i. i \ B ==> f i = g i |] ==> prod f A = prod g B" + +proof - + assume prems: "A = B" + "!!i. i \ B ==> f i = g i" + "g \ B -> carrier G" + show ?thesis + proof (cases "finite B") + case True + then have "!!A. [| A = B; g \ B -> carrier G; + !!i. i \ B ==> f i = g i |] ==> prod f A = prod g B" + proof induct + case empty thus ?case by simp + next + case (insert B x) + then have "prod f A = prod f (insert x B)" by simp + also from insert have "... = f x \ prod f B" + proof (intro prod_insert) + show "finite B" . + next + show "x \ B" . + next + assume "x \ B" "!!i. i \ insert x B \ f i = g i" + "g \ insert x B \ carrier G" + thus "f \ B -> carrier G" by fastsimp + next + assume "x ~: B" "!!i. i \ insert x B \ f i = g i" + "g \ insert x B \ carrier G" + thus "f x \ carrier G" by fastsimp + qed + also from insert have "... = g x \ prod g B" by fastsimp + also from insert have "... = prod g (insert x B)" + by (intro prod_insert [THEN sym]) auto + finally show ?case . + qed + with prems show ?thesis by simp + next + case False with prems show ?thesis by (simp add: prod_def) + qed +qed + +lemma (in finite_prod) prod_cong1 [cong]: + "[| A = B; !!i. i \ B ==> f i = g i; + g \ B -> carrier G = True |] ==> prod f A = prod g B" + by (rule prod_cong) fast+ + +text {* + Usually, if this rule causes a failed congruence proof error, + the reason is that the premise @{text "g \ B -> carrier G"} could not + be shown. Adding @{thm [source] Pi_def} to the simpset is often useful. +*} + +declare funcsetI [rule del] + funcset_mem [rule del] + +subsection {* Summation over the integer interval @{term "{..n}"} *} + +text {* + A new locale where the index set is restricted to @{term "nat"} is + necessary, because currently locales demand types in theorems to be as + general as in the locale's definition. +*} + +locale finite_prod_nat = finite_prod + + assumes "False ==> prod f (A::nat set) = prod f A" + +lemma (in finite_prod_nat) natSum_0 [simp]: + "f \ {0::nat} -> carrier G ==> prod f {..0} = f 0" +by (simp add: Pi_def) + +lemma (in finite_prod_nat) natsum_Suc [simp]: + "f \ {..Suc n} -> carrier G ==> + prod f {..Suc n} = (f (Suc n) \ prod f {..n})" +by (simp add: Pi_def atMost_Suc) + +lemma (in finite_prod_nat) natsum_Suc2: + "f \ {..Suc n} -> carrier G ==> + prod f {..Suc n} = (prod (%i. f (Suc i)) {..n} \ f 0)" +proof (induct n) + case 0 thus ?case by (simp add: Pi_def) +next + case Suc thus ?case by (simp add: m_assoc Pi_def prod_closed) +qed + +lemma (in finite_prod_nat) natsum_zero [simp]: + "prod (%i. \) {..n::nat} = \" +by (induct n) (simp_all add: Pi_def) + +lemma (in finite_prod_nat) natsum_add [simp]: + "[| f \ {..n} -> carrier G; g \ {..n} -> carrier G |] ==> + prod (%i. f i \ g i) {..n::nat} = prod f {..n} \ prod g {..n}" +by (induct n) (simp_all add: ac Pi_def prod_closed) + +ML_setup {* + +Context.>> (fn thy => (simpset_ref_of thy := + simpset_of thy setsubgoaler asm_full_simp_tac; thy)) *} + +ML_setup {* + +Context.>> (fn thy => (simpset_ref_of thy := + simpset_of thy setsubgoaler asm_simp_tac; thy)) *} + +end diff -r 4d50cf8ea3d7 -r 12b2ffbe543a src/Pure/meta_simplifier.ML --- a/src/Pure/meta_simplifier.ML Wed Feb 26 14:26:18 2003 +0100 +++ b/src/Pure/meta_simplifier.ML Thu Feb 27 15:12:29 2003 +0100 @@ -404,13 +404,19 @@ is_full_cong_prems prems (xs ~~ ys) end +fun cong_name (Const (a, _)) = Some a + | cong_name (Free (a, _)) = Some ("Free: " ^ a) + | cong_name _ = None; + fun add_cong (Mss {rules,congs,procs,bounds,prems,mk_rews,termless,depth}, thm) = let val (lhs, _) = Drule.dest_equals (Drule.strip_imp_concl (cprop_of thm)) handle TERM _ => raise SIMPLIFIER ("Congruence not a meta-equality", thm); (* val lhs = Pattern.eta_contract lhs; *) - val (a, _) = dest_Const (head_of (term_of lhs)) handle TERM _ => - raise SIMPLIFIER ("Congruence must start with a constant", thm); + val a = (case cong_name (head_of (term_of lhs)) of + Some a => a + | None => + raise SIMPLIFIER ("Congruence must start with a constant or free variable", thm)); val (alist,weak) = congs val alist2 = overwrite_warn (alist, (a,{lhs=lhs, thm=thm})) ("Overwriting congruence rule for " ^ quote a); @@ -429,8 +435,10 @@ val (lhs, _) = Logic.dest_equals (concl_of thm) handle TERM _ => raise SIMPLIFIER ("Congruence not a meta-equality", thm); (* val lhs = Pattern.eta_contract lhs; *) - val (a, _) = dest_Const (head_of lhs) handle TERM _ => - raise SIMPLIFIER ("Congruence must start with a constant", thm); + val a = (case cong_name (head_of lhs) of + Some a => a + | None => + raise SIMPLIFIER ("Congruence must start with a constant", thm)); val (alist,_) = congs val alist2 = filter (fn (x,_)=> x<>a) alist val weak2 = mapfilter (fn(a,{thm,...}) => if is_full_cong thm then None @@ -780,8 +788,8 @@ | None => None)) end val (h, ts) = strip_comb t - in case h of - Const(a, _) => + in case cong_name h of + Some a => (case assoc_string (fst congs, a) of None => appc () | Some cong =>