# HG changeset patch # User wenzelm # Date 936214539 -7200 # Node ID 132e8ed29bd82edab3942ce417ec7f63a9ed0eb6 # Parent 27887c52b9c8d1332ef270ab5c2897f47feecb85 tuned; diff -r 27887c52b9c8 -r 132e8ed29bd8 src/HOL/Isar_examples/MutilatedCheckerboard.thy --- a/src/HOL/Isar_examples/MutilatedCheckerboard.thy Wed Sep 01 21:35:20 1999 +0200 +++ b/src/HOL/Isar_examples/MutilatedCheckerboard.thy Wed Sep 01 21:35:39 1999 +0200 @@ -167,7 +167,7 @@ lemma domino_finite: "d: domino ==> finite d"; proof (induct set: domino); - fix i j; + fix i j :: nat; show "finite {(i, j), (i, j + 1)}"; by (intro Finites.intrs); show "finite {(i, j), (i + 1, j)}"; by (intro Finites.intrs); qed; @@ -210,8 +210,7 @@ have "??e (a Un t) b = ??e a b Un ??e t b"; by (rule evnodd_Un); also; fix i j; assume "??e a b = {(i, j)}"; also; have "... Un ??e t b = insert (i, j) (??e t b)"; by simp; - finally; have "card (??e (a Un t) b) = card (insert (i, j) (??e t b))"; by simp; - also; have "... = Suc (card (??e t b))"; + also; have "card ... = Suc (card (??e t b))"; proof (rule card_insert_disjoint); show "finite (??e t b)"; by (rule evnodd_finite, rule tiling_domino_finite); have "(i, j) : ??e a b"; by asm_simp;