# HG changeset patch # User blanchet # Date 1272384471 -7200 # Node ID 134ac130a8ededcbb5b59fe0a783b51be7761454 # Parent db71041b596b43b4f396c6e3ba97085b1b025736 redid the proofs with the latest Sledgehammer; both an exercise and (for a few proofs) a demonstration of the new Isar proof code diff -r db71041b596b -r 134ac130a8ed src/HOL/Metis_Examples/BT.thy --- a/src/HOL/Metis_Examples/BT.thy Tue Apr 27 18:02:46 2010 +0200 +++ b/src/HOL/Metis_Examples/BT.thy Tue Apr 27 18:07:51 2010 +0200 @@ -10,7 +10,6 @@ imports Main begin - datatype 'a bt = Lf | Br 'a "'a bt" "'a bt" @@ -66,178 +65,217 @@ text {* \medskip BT simplification *} declare [[ atp_problem_prefix = "BT__n_leaves_reflect" ]] + lemma n_leaves_reflect: "n_leaves (reflect t) = n_leaves t" - apply (induct t) - apply (metis add_right_cancel n_leaves.simps(1) reflect.simps(1)) - apply (metis add_commute n_leaves.simps(2) reflect.simps(2)) - done +proof (induct t) + case Lf thus ?case by (metis reflect.simps(1)) +next + case (Br a t1 t2) thus ?case + by (metis class_semiring.add_c n_leaves.simps(2) reflect.simps(2)) +qed declare [[ atp_problem_prefix = "BT__n_nodes_reflect" ]] + lemma n_nodes_reflect: "n_nodes (reflect t) = n_nodes t" - apply (induct t) - apply (metis reflect.simps(1)) - apply (metis n_nodes.simps(2) nat_add_commute reflect.simps(2)) - done +proof (induct t) + case Lf thus ?case by (metis reflect.simps(1)) +next + case (Br a t1 t2) thus ?case + by (metis class_semiring.semiring_rules(24) n_nodes.simps(2) reflect.simps(2)) +qed declare [[ atp_problem_prefix = "BT__depth_reflect" ]] + lemma depth_reflect: "depth (reflect t) = depth t" - apply (induct t) - apply (metis depth.simps(1) reflect.simps(1)) - apply (metis depth.simps(2) min_max.sup_commute reflect.simps(2)) - done +apply (induct t) + apply (metis depth.simps(1) reflect.simps(1)) +by (metis depth.simps(2) min_max.inf_sup_aci(5) reflect.simps(2)) text {* - The famous relationship between the numbers of leaves and nodes. +The famous relationship between the numbers of leaves and nodes. *} declare [[ atp_problem_prefix = "BT__n_leaves_nodes" ]] + lemma n_leaves_nodes: "n_leaves t = Suc (n_nodes t)" - apply (induct t) - apply (metis n_leaves.simps(1) n_nodes.simps(1)) - apply auto - done +apply (induct t) + apply (metis n_leaves.simps(1) n_nodes.simps(1)) +by auto declare [[ atp_problem_prefix = "BT__reflect_reflect_ident" ]] + lemma reflect_reflect_ident: "reflect (reflect t) = t" - apply (induct t) - apply (metis add_right_cancel reflect.simps(1)); - apply (metis reflect.simps(2)) - done +apply (induct t) + apply (metis reflect.simps(1)) +proof - + fix a :: 'a and t1 :: "'a bt" and t2 :: "'a bt" + assume A1: "reflect (reflect t1) = t1" + assume A2: "reflect (reflect t2) = t2" + have "\V U. reflect (Br U V (reflect t1)) = Br U t1 (reflect V)" + using A1 by (metis reflect.simps(2)) + hence "\V U. Br U t1 (reflect (reflect V)) = reflect (reflect (Br U t1 V))" + by (metis reflect.simps(2)) + hence "\U. reflect (reflect (Br U t1 t2)) = Br U t1 t2" + using A2 by metis + thus "reflect (reflect (Br a t1 t2)) = Br a t1 t2" by blast +qed declare [[ atp_problem_prefix = "BT__bt_map_ident" ]] + lemma bt_map_ident: "bt_map (%x. x) = (%y. y)" apply (rule ext) apply (induct_tac y) - apply (metis bt_map.simps(1)) -txt{*BUG involving flex-flex pairs*} -(* apply (metis bt_map.simps(2)) *) -apply auto -done - + apply (metis bt_map.simps(1)) +by (metis COMBI_def bt_map.simps(2)) declare [[ atp_problem_prefix = "BT__bt_map_appnd" ]] + lemma bt_map_appnd: "bt_map f (appnd t u) = appnd (bt_map f t) (bt_map f u)" apply (induct t) - apply (metis appnd.simps(1) bt_map.simps(1)) - apply (metis appnd.simps(2) bt_map.simps(2)) (*slow!!*) -done - + apply (metis appnd.simps(1) bt_map.simps(1)) +by (metis appnd.simps(2) bt_map.simps(2)) declare [[ atp_problem_prefix = "BT__bt_map_compose" ]] + lemma bt_map_compose: "bt_map (f o g) t = bt_map f (bt_map g t)" -apply (induct t) - apply (metis bt_map.simps(1)) -txt{*Metis runs forever*} -(* apply (metis bt_map.simps(2) o_apply)*) -apply auto -done - +apply (induct t) + apply (metis bt_map.simps(1)) +by (metis bt_map.simps(2) o_eq_dest_lhs) declare [[ atp_problem_prefix = "BT__bt_map_reflect" ]] + lemma bt_map_reflect: "bt_map f (reflect t) = reflect (bt_map f t)" - apply (induct t) - apply (metis add_right_cancel bt_map.simps(1) reflect.simps(1)) - apply (metis add_right_cancel bt_map.simps(2) reflect.simps(2)) - done +apply (induct t) + apply (metis bt_map.simps(1) reflect.simps(1)) +by (metis bt_map.simps(2) reflect.simps(2)) declare [[ atp_problem_prefix = "BT__preorder_bt_map" ]] + lemma preorder_bt_map: "preorder (bt_map f t) = map f (preorder t)" - apply (induct t) - apply (metis bt_map.simps(1) map.simps(1) preorder.simps(1)) - apply simp - done +apply (induct t) + apply (metis bt_map.simps(1) map.simps(1) preorder.simps(1)) +by simp declare [[ atp_problem_prefix = "BT__inorder_bt_map" ]] + lemma inorder_bt_map: "inorder (bt_map f t) = map f (inorder t)" - apply (induct t) - apply (metis bt_map.simps(1) inorder.simps(1) map.simps(1)) - apply simp - done +proof (induct t) + case Lf thus ?case + proof - + have "map f [] = []" by (metis map.simps(1)) + hence "map f [] = inorder Lf" by (metis inorder.simps(1)) + hence "inorder (bt_map f Lf) = map f []" by (metis bt_map.simps(1)) + thus "inorder (bt_map f Lf) = map f (inorder Lf)" by (metis inorder.simps(1)) + qed +next + case (Br a t1 t2) thus ?case by simp +qed declare [[ atp_problem_prefix = "BT__postorder_bt_map" ]] + lemma postorder_bt_map: "postorder (bt_map f t) = map f (postorder t)" - apply (induct t) - apply (metis bt_map.simps(1) map.simps(1) postorder.simps(1)) - apply simp - done +apply (induct t) + apply (metis Nil_is_map_conv bt_map.simps(1) postorder.simps(1)) +by simp declare [[ atp_problem_prefix = "BT__depth_bt_map" ]] + lemma depth_bt_map [simp]: "depth (bt_map f t) = depth t" - apply (induct t) - apply (metis bt_map.simps(1) depth.simps(1)) - apply simp - done +apply (induct t) + apply (metis bt_map.simps(1) depth.simps(1)) +by simp declare [[ atp_problem_prefix = "BT__n_leaves_bt_map" ]] + lemma n_leaves_bt_map [simp]: "n_leaves (bt_map f t) = n_leaves t" - apply (induct t) - apply (metis One_nat_def Suc_eq_plus1 bt_map.simps(1) less_add_one less_antisym linorder_neq_iff n_leaves.simps(1)) - apply (metis bt_map.simps(2) n_leaves.simps(2)) - done - +apply (induct t) + apply (metis bt_map.simps(1) n_leaves.simps(1)) +proof - + fix a :: 'b and t1 :: "'b bt" and t2 :: "'b bt" + assume A1: "n_leaves (bt_map f t1) = n_leaves t1" + assume A2: "n_leaves (bt_map f t2) = n_leaves t2" + have "\V U. n_leaves (Br U (bt_map f t1) V) = n_leaves t1 + n_leaves V" + using A1 by (metis n_leaves.simps(2)) + hence "\V U. n_leaves (bt_map f (Br U t1 V)) = n_leaves t1 + n_leaves (bt_map f V)" + by (metis bt_map.simps(2)) + hence F1: "\U. n_leaves (bt_map f (Br U t1 t2)) = n_leaves t1 + n_leaves t2" + using A2 by metis + have "n_leaves t1 + n_leaves t2 = n_leaves (Br a t1 t2)" + by (metis n_leaves.simps(2)) + thus "n_leaves (bt_map f (Br a t1 t2)) = n_leaves (Br a t1 t2)" + using F1 by metis +qed declare [[ atp_problem_prefix = "BT__preorder_reflect" ]] + lemma preorder_reflect: "preorder (reflect t) = rev (postorder t)" - apply (induct t) - apply (metis postorder.simps(1) preorder.simps(1) reflect.simps(1) rev_is_Nil_conv) - apply (metis append_Nil Cons_eq_append_conv postorder.simps(2) preorder.simps(2) reflect.simps(2) rev.simps(2) rev_append rev_rev_ident) - done +apply (induct t) + apply (metis Nil_is_rev_conv postorder.simps(1) preorder.simps(1) + reflect.simps(1)) +by (metis append.simps(1) append.simps(2) postorder.simps(2) preorder.simps(2) + reflect.simps(2) rev.simps(2) rev_append rev_swap) declare [[ atp_problem_prefix = "BT__inorder_reflect" ]] + lemma inorder_reflect: "inorder (reflect t) = rev (inorder t)" - apply (induct t) - apply (metis inorder.simps(1) reflect.simps(1) rev.simps(1)) - apply simp - done +apply (induct t) + apply (metis Nil_is_rev_conv inorder.simps(1) reflect.simps(1)) +by simp +(* Slow: +by (metis append.simps(1) append_eq_append_conv2 inorder.simps(2) + reflect.simps(2) rev.simps(2) rev_append) +*) declare [[ atp_problem_prefix = "BT__postorder_reflect" ]] + lemma postorder_reflect: "postorder (reflect t) = rev (preorder t)" - apply (induct t) - apply (metis postorder.simps(1) preorder.simps(1) reflect.simps(1) rev.simps(1)) - apply (metis Cons_eq_appendI postorder.simps(2) preorder.simps(2) reflect.simps(2) rev.simps(2) rev_append self_append_conv2) - done +apply (induct t) + apply (metis Nil_is_rev_conv postorder.simps(1) preorder.simps(1) + reflect.simps(1)) +by (metis preorder_reflect reflect_reflect_ident rev_swap) text {* - Analogues of the standard properties of the append function for lists. +Analogues of the standard properties of the append function for lists. *} declare [[ atp_problem_prefix = "BT__appnd_assoc" ]] -lemma appnd_assoc [simp]: - "appnd (appnd t1 t2) t3 = appnd t1 (appnd t2 t3)" - apply (induct t1) - apply (metis appnd.simps(1)) - apply (metis appnd.simps(2)) - done + +lemma appnd_assoc [simp]: "appnd (appnd t1 t2) t3 = appnd t1 (appnd t2 t3)" +apply (induct t1) + apply (metis appnd.simps(1)) +by (metis appnd.simps(2)) declare [[ atp_problem_prefix = "BT__appnd_Lf2" ]] + lemma appnd_Lf2 [simp]: "appnd t Lf = t" - apply (induct t) - apply (metis appnd.simps(1)) - apply (metis appnd.simps(2)) - done +apply (induct t) + apply (metis appnd.simps(1)) +by (metis appnd.simps(2)) + +declare max_add_distrib_left [simp] declare [[ atp_problem_prefix = "BT__depth_appnd" ]] - declare max_add_distrib_left [simp] + lemma depth_appnd [simp]: "depth (appnd t1 t2) = depth t1 + depth t2" - apply (induct t1) - apply (metis add_0 appnd.simps(1) depth.simps(1)) -apply (simp add: ); - done +apply (induct t1) + apply (metis appnd.simps(1) depth.simps(1) plus_nat.simps(1)) +by simp declare [[ atp_problem_prefix = "BT__n_leaves_appnd" ]] + lemma n_leaves_appnd [simp]: "n_leaves (appnd t1 t2) = n_leaves t1 * n_leaves t2" - apply (induct t1) - apply (metis One_nat_def appnd.simps(1) less_irrefl less_linear n_leaves.simps(1) nat_mult_1) - apply (simp add: left_distrib) - done +apply (induct t1) + apply (metis appnd.simps(1) n_leaves.simps(1) nat_mult_1 plus_nat.simps(1) + semiring_norm(111)) +by (simp add: left_distrib) declare [[ atp_problem_prefix = "BT__bt_map_appnd" ]] + lemma (*bt_map_appnd:*) "bt_map f (appnd t1 t2) = appnd (bt_map f t1) (bt_map f t2)" - apply (induct t1) - apply (metis appnd.simps(1) bt_map_appnd) - apply (metis bt_map_appnd) - done +apply (induct t1) + apply (metis appnd.simps(1) bt_map.simps(1)) +by (metis bt_map_appnd) end