# HG changeset patch # User huffman # Date 1314802315 25200 # Node ID 134c06282ae6022bc588fb3140846f8ed158a92a # Parent a40b713232c863d47d58ebf0f6551cef865fce52 convert to Isar-style proof diff -r a40b713232c8 -r 134c06282ae6 src/HOL/Limits.thy --- a/src/HOL/Limits.thy Wed Aug 31 13:22:50 2011 +0200 +++ b/src/HOL/Limits.thy Wed Aug 31 07:51:55 2011 -0700 @@ -916,21 +916,6 @@ thus ?thesis by (rule BfunI) qed -lemma tendsto_inverse_lemma: - fixes a :: "'a::real_normed_div_algebra" - shows "\(f ---> a) F; a \ 0; eventually (\x. f x \ 0) F\ - \ ((\x. inverse (f x)) ---> inverse a) F" - apply (subst tendsto_Zfun_iff) - apply (rule Zfun_ssubst) - apply (erule eventually_elim1) - apply (erule (1) inverse_diff_inverse) - apply (rule Zfun_minus) - apply (rule Zfun_mult_left) - apply (rule bounded_bilinear.Bfun_prod_Zfun [OF bounded_bilinear_mult]) - apply (erule (1) Bfun_inverse) - apply (simp add: tendsto_Zfun_iff) - done - lemma tendsto_inverse [tendsto_intros]: fixes a :: "'a::real_normed_div_algebra" assumes f: "(f ---> a) F" @@ -942,8 +927,15 @@ by (rule tendstoD) then have "eventually (\x. f x \ 0) F" unfolding dist_norm by (auto elim!: eventually_elim1) - with f a show ?thesis - by (rule tendsto_inverse_lemma) + with a have "eventually (\x. inverse (f x) - inverse a = + - (inverse (f x) * (f x - a) * inverse a)) F" + by (auto elim!: eventually_elim1 simp: inverse_diff_inverse) + moreover have "Zfun (\x. - (inverse (f x) * (f x - a) * inverse a)) F" + by (intro Zfun_minus Zfun_mult_left + bounded_bilinear.Bfun_prod_Zfun [OF bounded_bilinear_mult] + Bfun_inverse [OF f a] f [unfolded tendsto_Zfun_iff]) + ultimately show ?thesis + unfolding tendsto_Zfun_iff by (rule Zfun_ssubst) qed lemma tendsto_divide [tendsto_intros]: