# HG changeset patch # User paulson # Date 888487657 -3600 # Node ID 134d24ddaad3222de1eae5a93f2096891de94a71 # Parent 481628ea8eddca499ea8ede3de1c3792b2429771 Proved choice and bchoice; changed Fun.thy -> thy diff -r 481628ea8edd -r 134d24ddaad3 src/HOL/Fun.ML --- a/src/HOL/Fun.ML Thu Feb 26 10:48:19 1998 +0100 +++ b/src/HOL/Fun.ML Thu Feb 26 11:07:37 1998 +0100 @@ -6,59 +6,71 @@ Lemmas about functions. *) -goal Fun.thy "(f = g) = (!x. f(x)=g(x))"; + +goal thy "(f = g) = (!x. f(x)=g(x))"; by (rtac iffI 1); by (Asm_simp_tac 1); by (rtac ext 1 THEN Asm_simp_tac 1); qed "expand_fun_eq"; -val prems = goal Fun.thy +val prems = goal thy "[| f(x)=u; !!x. P(x) ==> g(f(x)) = x; P(x) |] ==> x=g(u)"; by (rtac (arg_cong RS box_equals) 1); by (REPEAT (resolve_tac (prems@[refl]) 1)); qed "apply_inverse"; +(** "Axiom" of Choice, proved using the description operator **) + +goal HOL.thy "!!Q. ALL x. EX y. Q x y ==> EX f. ALL x. Q x (f x)"; +by (fast_tac (claset() addEs [selectI]) 1); +qed "choice"; + +goal Set.thy "!!S. ALL x:S. EX y. Q x y ==> EX f. ALL x:S. Q x (f x)"; +by (fast_tac (claset() addEs [selectI]) 1); +qed "bchoice"; + + (*** inj(f): f is a one-to-one function ***) -val prems = goalw Fun.thy [inj_def] +val prems = goalw thy [inj_def] "[| !! x y. f(x) = f(y) ==> x=y |] ==> inj(f)"; by (blast_tac (claset() addIs prems) 1); qed "injI"; -val [major] = goal Fun.thy "(!!x. g(f(x)) = x) ==> inj(f)"; +val [major] = goal thy "(!!x. g(f(x)) = x) ==> inj(f)"; by (rtac injI 1); by (etac (arg_cong RS box_equals) 1); by (rtac major 1); by (rtac major 1); qed "inj_inverseI"; -val [major,minor] = goalw Fun.thy [inj_def] +val [major,minor] = goalw thy [inj_def] "[| inj(f); f(x) = f(y) |] ==> x=y"; by (rtac (major RS spec RS spec RS mp) 1); by (rtac minor 1); qed "injD"; (*Useful with the simplifier*) -val [major] = goal Fun.thy "inj(f) ==> (f(x) = f(y)) = (x=y)"; +val [major] = goal thy "inj(f) ==> (f(x) = f(y)) = (x=y)"; by (rtac iffI 1); by (etac (major RS injD) 1); by (etac arg_cong 1); qed "inj_eq"; -val [major] = goal Fun.thy "inj(f) ==> (@x. f(x)=f(y)) = y"; +val [major] = goal thy "inj(f) ==> (@x. f(x)=f(y)) = y"; by (rtac (major RS injD) 1); by (rtac selectI 1); by (rtac refl 1); qed "inj_select"; (*A one-to-one function has an inverse (given using select).*) -val [major] = goalw Fun.thy [inv_def] "inj(f) ==> inv f (f x) = x"; +val [major] = goalw thy [inv_def] "inj(f) ==> inv f (f x) = x"; by (EVERY1 [rtac (major RS inj_select)]); qed "inv_f_f"; (* Useful??? *) -val [oneone,minor] = goal Fun.thy +val [oneone,minor] = goal thy "[| inj(f); !!y. y: range(f) ==> P(inv f y) |] ==> P(x)"; by (res_inst_tac [("t", "x")] (oneone RS (inv_f_f RS subst)) 1); by (rtac (rangeI RS minor) 1); @@ -67,36 +79,36 @@ (*** inj_onto f A: f is one-to-one over A ***) -val prems = goalw Fun.thy [inj_onto_def] +val prems = goalw thy [inj_onto_def] "(!! x y. [| f(x) = f(y); x:A; y:A |] ==> x=y) ==> inj_onto f A"; by (blast_tac (claset() addIs prems) 1); qed "inj_ontoI"; -val [major] = goal Fun.thy +val [major] = goal thy "(!!x. x:A ==> g(f(x)) = x) ==> inj_onto f A"; by (rtac inj_ontoI 1); by (etac (apply_inverse RS trans) 1); by (REPEAT (eresolve_tac [asm_rl,major] 1)); qed "inj_onto_inverseI"; -val major::prems = goalw Fun.thy [inj_onto_def] +val major::prems = goalw thy [inj_onto_def] "[| inj_onto f A; f(x)=f(y); x:A; y:A |] ==> x=y"; by (rtac (major RS bspec RS bspec RS mp) 1); by (REPEAT (resolve_tac prems 1)); qed "inj_ontoD"; -goal Fun.thy "!!x y.[| inj_onto f A; x:A; y:A |] ==> (f(x)=f(y)) = (x=y)"; +goal thy "!!x y.[| inj_onto f A; x:A; y:A |] ==> (f(x)=f(y)) = (x=y)"; by (blast_tac (claset() addSDs [inj_ontoD]) 1); qed "inj_onto_iff"; -val major::prems = goal Fun.thy +val major::prems = goal thy "[| inj_onto f A; ~x=y; x:A; y:A |] ==> ~ f(x)=f(y)"; by (rtac contrapos 1); by (etac (major RS inj_ontoD) 2); by (REPEAT (resolve_tac prems 1)); qed "inj_onto_contraD"; -goalw Fun.thy [inj_onto_def] +goalw thy [inj_onto_def] "!!A B. [| A<=B; inj_onto f B |] ==> inj_onto f A"; by (Blast_tac 1); qed "subset_inj_onto"; @@ -104,26 +116,26 @@ (*** Lemmas about inj ***) -goalw Fun.thy [o_def] +goalw thy [o_def] "!!f g. [| inj(f); inj_onto g (range f) |] ==> inj(g o f)"; by (fast_tac (claset() addIs [injI] addEs [injD, inj_ontoD]) 1); qed "comp_inj"; -val [prem] = goal Fun.thy "inj(f) ==> inj_onto f A"; +val [prem] = goal thy "inj(f) ==> inj_onto f A"; by (blast_tac (claset() addIs [prem RS injD, inj_ontoI]) 1); qed "inj_imp"; -val [prem] = goalw Fun.thy [inv_def] "y : range(f) ==> f(inv f y) = y"; +val [prem] = goalw thy [inv_def] "y : range(f) ==> f(inv f y) = y"; by (EVERY1 [rtac (prem RS rangeE), rtac selectI, etac sym]); qed "f_inv_f"; -val prems = goal Fun.thy +val prems = goal thy "[| inv f x=inv f y; x: range(f); y: range(f) |] ==> x=y"; by (rtac (arg_cong RS box_equals) 1); by (REPEAT (resolve_tac (prems @ [f_inv_f]) 1)); qed "inv_injective"; -goal Fun.thy "!!f. [| inj(f); A<=range(f) |] ==> inj_onto (inv f) A"; +goal thy "!!f. [| inj(f); A<=range(f) |] ==> inj_onto (inv f) A"; by (fast_tac (claset() addIs [inj_ontoI] addEs [inv_injective,injD]) 1); qed "inj_onto_inv";