# HG changeset patch # User paulson # Date 1331640247 0 # Node ID 1382bba4b7a59fe1f53d6af73b52e0bb6d006b6d # Parent d5bb4c212df16c6065c8095787d6fc1010bc0e5f More structured proofs about cardinal arithmetic diff -r d5bb4c212df1 -r 1382bba4b7a5 src/ZF/AC/DC.thy --- a/src/ZF/AC/DC.thy Mon Mar 12 23:33:50 2012 +0100 +++ b/src/ZF/AC/DC.thy Tue Mar 13 12:04:07 2012 +0000 @@ -492,6 +492,13 @@ lemma value_in_image: "[| f \ X->Y; A \ X; a \ A |] ==> f`a \ f``A" by (fast elim!: image_fun [THEN ssubst]) +lemma lesspoll_lemma: "[| ~ A \ B; C \ B |] ==> A - C \ 0" +apply (unfold lesspoll_def) +apply (fast dest!: Diff_eq_0_iff [THEN iffD1, THEN subset_imp_lepoll] + intro!: eqpollI elim: notE + elim!: eqpollE lepoll_trans) +done + theorem DC_WO3: "(\K. Card(K) \ DC(K)) ==> WO3" apply (unfold DC_def WO3_def) apply (rule allI) diff -r d5bb4c212df1 -r 1382bba4b7a5 src/ZF/CardinalArith.thy --- a/src/ZF/CardinalArith.thy Mon Mar 12 23:33:50 2012 +0100 +++ b/src/ZF/CardinalArith.thy Tue Mar 13 12:04:07 2012 +0000 @@ -63,12 +63,11 @@ hence jls: "j \ c" by (simp add: lt_Card_imp_lesspoll) { assume eqp: "j \ \A" - hence Uls: "\A \ c" using jls - by (blast intro: eqpoll_sym eqpoll_imp_lepoll lesspoll_trans1) - moreover have "c \ \A" using c + have "c \ \A" using c by (blast intro: subset_imp_lepoll) - ultimately have "c \ c" - by (blast intro: lesspoll_trans1) + also have "... \ j" by (rule eqpoll_sym [OF eqp]) + also have "... \ c" by (rule jls) + finally have "c \ c" . hence False by auto } thus "\ j \ \A" by blast @@ -87,13 +86,6 @@ apply (fast intro!: le_imp_lepoll ltI leI) done -lemma lesspoll_lemma: "[| ~ A \ B; C \ B |] ==> A - C \ 0" -apply (unfold lesspoll_def) -apply (fast dest!: Diff_eq_0_iff [THEN iffD1, THEN subset_imp_lepoll] - intro!: eqpollI elim: notE - elim!: eqpollE lepoll_trans) -done - subsection{*Cardinal addition*} @@ -123,20 +115,20 @@ apply (rule sum_assoc_bij) done -(*Unconditional version requires AC*) +text{*Unconditional version requires AC*} lemma well_ord_cadd_assoc: - "[| well_ord(i,ri); well_ord(j,rj); well_ord(k,rk) |] - ==> (i \ j) \ k = i \ (j \ k)" -apply (unfold cadd_def) -apply (rule cardinal_cong) -apply (rule eqpoll_trans) - apply (rule sum_eqpoll_cong [OF well_ord_cardinal_eqpoll eqpoll_refl]) - apply (blast intro: well_ord_radd ) -apply (rule sum_assoc_eqpoll [THEN eqpoll_trans]) -apply (rule eqpoll_sym) -apply (rule sum_eqpoll_cong [OF eqpoll_refl well_ord_cardinal_eqpoll]) -apply (blast intro: well_ord_radd ) -done + assumes i: "well_ord(i,ri)" and j: "well_ord(j,rj)" and k: "well_ord(k,rk)" + shows "(i \ j) \ k = i \ (j \ k)" +proof (unfold cadd_def, rule cardinal_cong) + have "|i + j| + k \ (i + j) + k" + by (blast intro: sum_eqpoll_cong well_ord_cardinal_eqpoll eqpoll_refl well_ord_radd i j) + also have "... \ i + (j + k)" + by (rule sum_assoc_eqpoll) + also have "... \ i + |j + k|" + by (blast intro: sum_eqpoll_cong well_ord_cardinal_eqpoll eqpoll_refl well_ord_radd j k eqpoll_sym) + finally show "|i + j| + k \ i + |j + k|" . +qed + subsubsection{*0 is the identity for addition*} @@ -224,7 +216,6 @@ subsubsection{*Cardinal multiplication is commutative*} -(*Easier to prove the two directions separately*) lemma prod_commute_eqpoll: "A*B \ B*A" apply (unfold eqpoll_def) apply (rule exI) @@ -245,20 +236,19 @@ apply (rule prod_assoc_bij) done -(*Unconditional version requires AC*) +text{*Unconditional version requires AC*} lemma well_ord_cmult_assoc: - "[| well_ord(i,ri); well_ord(j,rj); well_ord(k,rk) |] - ==> (i \ j) \ k = i \ (j \ k)" -apply (unfold cmult_def) -apply (rule cardinal_cong) -apply (rule eqpoll_trans) - apply (rule prod_eqpoll_cong [OF well_ord_cardinal_eqpoll eqpoll_refl]) - apply (blast intro: well_ord_rmult) -apply (rule prod_assoc_eqpoll [THEN eqpoll_trans]) -apply (rule eqpoll_sym) -apply (rule prod_eqpoll_cong [OF eqpoll_refl well_ord_cardinal_eqpoll]) -apply (blast intro: well_ord_rmult) -done + assumes i: "well_ord(i,ri)" and j: "well_ord(j,rj)" and k: "well_ord(k,rk)" + shows "(i \ j) \ k = i \ (j \ k)" +proof (unfold cmult_def, rule cardinal_cong) + have "|i * j| * k \ (i * j) * k" + by (blast intro: prod_eqpoll_cong well_ord_cardinal_eqpoll eqpoll_refl well_ord_rmult i j) + also have "... \ i * (j * k)" + by (rule prod_assoc_eqpoll) + also have "... \ i * |j * k|" + by (blast intro: prod_eqpoll_cong well_ord_cardinal_eqpoll eqpoll_refl well_ord_rmult j k eqpoll_sym) + finally show "|i * j| * k \ i * |j * k|" . +qed subsubsection{*Cardinal multiplication distributes over addition*} @@ -269,19 +259,17 @@ done lemma well_ord_cadd_cmult_distrib: - "[| well_ord(i,ri); well_ord(j,rj); well_ord(k,rk) |] - ==> (i \ j) \ k = (i \ k) \ (j \ k)" -apply (unfold cadd_def cmult_def) -apply (rule cardinal_cong) -apply (rule eqpoll_trans) - apply (rule prod_eqpoll_cong [OF well_ord_cardinal_eqpoll eqpoll_refl]) -apply (blast intro: well_ord_radd) -apply (rule sum_prod_distrib_eqpoll [THEN eqpoll_trans]) -apply (rule eqpoll_sym) -apply (rule sum_eqpoll_cong [OF well_ord_cardinal_eqpoll - well_ord_cardinal_eqpoll]) -apply (blast intro: well_ord_rmult)+ -done + assumes i: "well_ord(i,ri)" and j: "well_ord(j,rj)" and k: "well_ord(k,rk)" + shows "(i \ j) \ k = (i \ k) \ (j \ k)" +proof (unfold cadd_def cmult_def, rule cardinal_cong) + have "|i + j| * k \ (i + j) * k" + by (blast intro: prod_eqpoll_cong well_ord_cardinal_eqpoll eqpoll_refl well_ord_radd i j) + also have "... \ i * k + j * k" + by (rule sum_prod_distrib_eqpoll) + also have "... \ |i * k| + |j * k|" + by (blast intro: sum_eqpoll_cong well_ord_cardinal_eqpoll well_ord_rmult i j k eqpoll_sym) + finally show "|i + j| * k \ |i * k| + |j * k|" . +qed subsubsection{*Multiplication by 0 yields 0*} @@ -391,12 +379,15 @@ lemma cmult_2: "Card(n) ==> 2 \ n = n \ n" by (simp add: cmult_succ_lemma Card_is_Ord cadd_commute [of _ 0]) -lemma sum_lepoll_prod: "2 \ C ==> B+B \ C*B" -apply (rule lepoll_trans) -apply (rule sum_eq_2_times [THEN equalityD1, THEN subset_imp_lepoll]) -apply (erule prod_lepoll_mono) -apply (rule lepoll_refl) -done +lemma sum_lepoll_prod: + assumes C: "2 \ C" shows "B+B \ C*B" +proof - + have "B+B \ 2*B" + by (simp add: sum_eq_2_times) + also have "... \ C*B" + by (blast intro: prod_lepoll_mono lepoll_refl C) + finally show "B+B \ C*B" . +qed lemma lepoll_imp_sum_lepoll_prod: "[| A \ B; 2 \ A |] ==> A+B \ A*B" by (blast intro: sum_lepoll_mono sum_lepoll_prod lepoll_trans lepoll_refl) @@ -485,17 +476,15 @@ subsubsection{*Establishing the well-ordering*} -lemma csquare_lam_inj: - "Ord(K) ==> (lam :K*K. y, x, y>) \ inj(K*K, K*K*K)" -apply (unfold inj_def) -apply (force intro: lam_type Un_least_lt [THEN ltD] ltI) -done - -lemma well_ord_csquare: "Ord(K) ==> well_ord(K*K, csquare_rel(K))" -apply (unfold csquare_rel_def) -apply (rule csquare_lam_inj [THEN well_ord_rvimage], assumption) -apply (blast intro: well_ord_rmult well_ord_Memrel) -done +lemma well_ord_csquare: + assumes K: "Ord(K)" shows "well_ord(K*K, csquare_rel(K))" +proof (unfold csquare_rel_def, rule well_ord_rvimage) + show "(\\x,y\\K \ K. \x \ y, x, y\) \ inj(K \ K, K \ K \ K)" using K + by (force simp add: inj_def intro: lam_type Un_least_lt [THEN ltD] ltI) +next + show "well_ord(K \ K \ K, rmult(K, Memrel(K), K \ K, rmult(K, Memrel(K), K, Memrel(K))))" + using K by (blast intro: well_ord_rmult well_ord_Memrel) +qed subsubsection{*Characterising initial segments of the well-ordering*} @@ -512,8 +501,7 @@ lemma pred_csquare_subset: "z Order.pred(K*K, , csquare_rel(K)) \ succ(z)*succ(z)" apply (unfold Order.pred_def) -apply (safe del: SigmaI succCI) -apply (erule csquareD [THEN conjE]) +apply (safe del: SigmaI dest!: csquareD) apply (unfold lt_def, auto) done @@ -553,28 +541,36 @@ apply (blast intro!: Un_upper1_le Un_upper2_le Ord_ordermap elim!: ltE)+ done -(*Kunen: "each : K*K has no more than z*z predecessors..." (page 29) *) +text{*Kunen: "each @{term"\x,y\ \ K \ K"} has no more than @{term"z \ z"} predecessors..." (page 29) *} lemma ordermap_csquare_le: - "[| Limit(K); x y) |] - ==> | ordermap(K*K, csquare_rel(K)) ` | \ |succ(z)| \ |succ(z)|" -apply (unfold cmult_def) -apply (rule well_ord_rmult [THEN well_ord_lepoll_imp_Card_le]) -apply (rule Ord_cardinal [THEN well_ord_Memrel])+ -apply (subgoal_tac "z y)" + shows "|ordermap(K \ K, csquare_rel(K)) ` \x,y\| \ |succ(z)| \ |succ(z)|" +proof (unfold cmult_def, rule well_ord_lepoll_imp_Card_le) + show "well_ord(|succ(z)| \ |succ(z)|, + rmult(|succ(z)|, Memrel(|succ(z)|), |succ(z)|, Memrel(|succ(z)|)))" + by (blast intro: Ord_cardinal well_ord_Memrel well_ord_rmult) +next + have zK: "z K, csquare_rel(K)) ` \x,y\ \ ordermap(K \ K, csquare_rel(K)) ` \z,z\" + by (blast intro: ordermap_z_lt leI le_imp_lepoll K x y z) + also have "... \ Order.pred(K \ K, \z,z\, csquare_rel(K))" + proof (rule ordermap_eqpoll_pred) + show "well_ord(K \ K, csquare_rel(K))" using K + by (rule Limit_is_Ord [THEN well_ord_csquare]) + next + show "\z, z\ \ K \ K" using zK + by (blast intro: ltD) + qed + also have "... \ succ(z) \ succ(z)" using zK + by (rule pred_csquare_subset [THEN subset_imp_lepoll]) + also have "... \ |succ(z)| \ |succ(z)|" using oz + by (blast intro: prod_eqpoll_cong Ord_succ Ord_cardinal_eqpoll eqpoll_sym) + finally show "ordermap(K \ K, csquare_rel(K)) ` \x,y\ \ |succ(z)| \ |succ(z)|" . +qed -(*Kunen: "... so the order type is @{text"\"} K" *) +text{*Kunen: "... so the order type is @{text"\"} K" *} lemma ordertype_csquare_le: "[| InfCard(K); \y\K. InfCard(y) \ y \ y = y |] ==> ordertype(K*K, csquare_rel(K)) \ K"